ترغب بنشر مسار تعليمي؟ اضغط هنا

The RASS--6dFGS catalogue: a sample of X-ray selected AGN from the 6dF Galaxy Survey

204   0   0.0 ( 0 )
 نشر من قبل Elizabeth Mahony
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a catalogue of 3405 X-ray sources from the ROSAT All Sky Survey (RASS) Bright Source Catalogue which fall within the area covered by the 6dF Galaxy Survey (6dFGS). The catalogue is count-rate limited at 0.05 ctss in the X-ray and covers the area of sky with delta < 0 deg and |b|>10 deg. The RASS--6dFGS sample was one of the additional target catalogues of the 6dFGS and as a result we obtained optical spectra for 2224 (65%) RASS sources. Of these, 1715 (77%) have reliable redshifts with a median redshift of z=0.16 (excluding the Galactic sources). For the optically bright sources (b_J < 17.5) in the observed sample, over 90% have reliable redshifts. The catalogue mainly comprises QSOs and active galaxies but also includes 238 Galactic sources. Of the sources with reliable redshifts the majority are Type 1 AGN (69%), while 12% are Type 2 AGN, 6% absorption-line galaxies and 13% are stars. We also identify a small number of optically-faint, very low redshift, compact objects which fall outside the general trend in the b_J-z plane. We detect 918 sources (27%) of the RASS--6dFGS sample in the radio using either the 1.4 GHz NRAO VLA Sky Survey (NVSS) or the 843 MHz Sydney University Molonglo Sky Survey (SUMSS) catalogues and find that the detection rate changes with redshift. At redshifts larger than 1 virtually all of these sources have radio counterparts and with a median flux density of 1.15 Jy, they are much stronger than the median flux density of 28.6 mJy for the full sample. We attribute this to the fact that the X-ray flux of these objects is being boosted by a jet component, possibly Doppler boosted, that is only present in radio-loud AGN. (abridged version)



قيم البحث

اقرأ أيضاً

Some indications for tension have long been identified between cosmological constraints obtained from galaxy clusters and primary CMB measurements. Typically, assuming the matter density and fluctuations, as parameterized with Omega_m and sigma_8, es timated from CMB measurements, many more clusters are expected than those actually observed. One possible explanation could be that certain types of galaxy groups or clusters were missed in samples constructed in previous surveys, resulting in a higher incompleteness than estimated. We aim to determine if a hypothetical class of very extended, low surface brightness, galaxy groups or clusters have been missed in previous X-ray cluster surveys based on the ROSAT All-Sky Survey (RASS). We applied a dedicated source detection algorithm sensitive also to more unusual group or cluster surface brightness distributions. We found many known but also a number of new group candidates, which are not included in any previous X-ray / SZ cluster catalogs. In this paper, we present a pilot sample of 13 very extended groups discovered in the RASS at positions where no X-ray source has been detected previously and with clear optical counterparts. The X-ray fluxes of at least 5 of these are above the nominal flux-limits of previous RASS cluster catalogs. They have low mass ($10^{13} - 10^{14} M_{odot}$; i.e., galaxy groups), are at low redshift (z<0.08), and exhibit flatter surface brightness distributions than usual. We demonstrate that galaxy groups were missed in previous RASS surveys, possibly due to the flat surface brightness distributions of this potential new population. Analysis of the full sample will show if this might have a significant effect on previous cosmological parameter constraints based on RASS cluster surveys. (This is a shortened version of the abstract - full text in the article)
Cosmological probes based on galaxy clusters rely on cluster number counts and large-scale structure information. X-ray cluster surveys are well suited for this purpose, since they are far less affected than optical surveys by projection effects, and cluster properties can be predicted with good accuracy. The XMM Cluster Archive Super Survey, X-CLASS, is a serendipitous search of X-ray-detected galaxy clusters in 4176 XMM-Newton archival observations until August 2015. All observations are clipped to exposure times of 10 and 20 ks to obtain uniformity and they span ~269 deg$^2$ across the high-Galactic latitude sky ($|b|> 20^o$). The main goal of the survey is the compilation of a well-selected cluster sample suitable for cosmological analyses. We describe the detection algorithm, the visual inspection, the verification process and the redshift validation of the cluster sample, as well as the cluster selection function computed by simulations. We also present the various metadata that are released with the catalogue, along with the redshifts of 124 clusters obtained with a dedicated multi-object spectroscopic follow-up programme. With this publication we release the new X-CLASS catalogue of 1646 well-selected X-ray-detected clusters over a wide sky area, along with their selection function. The sample spans a wide redshift range, from the local Universe up to z~1.5, with 982 spectroscopically confirmed clusters, and over 70 clusters above z=0.8. Because of its homogeneous selection and thorough verification, the cluster sample can be used for cosmological analyses, but also as a test-bed for the upcoming eROSITA observations and other current and future large-area cluster surveys. It is the first time that such a catalogue is made available to the community via an interactive database which gives access to a wealth of supplementary information, images, and data.
We present the first direct measurement of the mean Halo Occupation Distribution (HOD) of X-ray selected AGN in the COSMOS field at z < 1, based on the association of 41 XMM and 17 C-COSMOS AGN with member galaxies of 189 X-ray detected galaxy groups from XMM and Chandra data. We model the mean AGN occupation in the halo mass range logM_200[Msun] = 13-14.5 with a rolling-off power-law with the best fit index alpha = 0.06(-0.22;0.36) and normalization parameter f_a = 0.05(0.04;0.06). We find the mean HOD of AGN among central galaxies to be modelled by a softened step function at logMh > logMmin = 12.75 (12.10,12.95) Msun while for the satellite AGN HOD we find a preference for an increasing AGN fraction with Mh suggesting that the average number of AGN in satellite galaxies grows slower (alpha_s < 0.6) than the linear proportion (alpha_s = 1) observed for the satellite HOD of samples of galaxies. We present an estimate of the projected auto correlation function (ACF) of galaxy groups over the range of r_p = 0.1-40 Mpc/h at <z> = 0.5. We use the large-scale clustering signal to verify the agreement between the group bias estimated by using the observed galaxy groups ACF and the value derived from the group mass estimates. We perform a measurement of the projected AGN-galaxy group cross-correlation function, excluding from the analysis AGN that are within galaxy groups and we model the 2-halo term of the clustering signal with the mean AGN HOD based on our results.
144 - Frank Masci 2010
The Two Micron All-Sky Survey (2MASS) has provided a uniform photometric catalog to search for previously unknown red AGN and QSOs. We have extended the search to the southern equatorial sky by obtaining spectra for 1182 AGN candidates using the 6dF multifibre spectrograph on the UK Schmidt Telescope. These were scheduled as auxiliary targets for the 6dF Galaxy Redshift Survey. The candidates were selected using a single color cut of J - Ks > 2 to Ks ~ 15.5 and a galactic latitude of |b|>30 deg. 432 spectra were of sufficient quality to enable a reliable classification. 116 sources (or ~27%) were securely classified as type 1 AGN, 20 as probable type 1s, and 57 as probable type 2 AGN. Most of them span the redshift range 0.05<z<0.5 and only 8 (or ~6%) were previously identified as AGN or QSOs. Our selection leads to a significantly higher AGN identification rate amongst local galaxies (>20%) than in any previous galaxy survey. A small fraction of the type 1 AGN could have their optical colors reddened by optically thin dust with A_V<2 mag relative to optically selected QSOs. A handful show evidence for excess far-IR emission. The equivalent width (EW) and color distributions of the type 1 and 2 AGN are consistent with AGN unified models. In particular, the EW of the [OIII] emission line weakly correlates with optical--near-IR color in each class of AGN, suggesting anisotropic obscuration of the AGN continuum. Overall, the optical properties of the 2MASS red AGN are not dramatically different from those of optically-selected QSOs. Our near-IR selection appears to detect the most near-IR luminous QSOs in the local universe to z~0.6 and provides incentive to extend the search to deeper near-IR surveys.
[abridged] We present the results of a pilot study for the extended MACS survey (eMACS), a comprehensive search for distant, X-ray luminous galaxy clusters at z>0.5. Our pilot study applies the eMACS concept to the 71 deg^2 area extended by the ten fields of the Pan-STARRS1 (PS1) Medium Deep Survey (MDS). Candidate clusters are identified by visual inspection of PS1 images in the g,r, i, and z bands in a 5x5 arcmin^2 region around X-ray sources detected in the ROSAT All-Sky Survey (RASS). To test and optimize the eMACS X-ray selection criteria, our pilot study uses the largest possible RASS database, i.e., all RASS sources listed in the Bright and Faint Source Catalogs (BSC and FSC) that fall within the MDS footprint. Scrutiny of PS1/MDS images for 41 BSC and 200 FSC sources combined with dedicated spectroscopic follow-up observations results in a sample of 11 clusters with estimated or spectroscopic redshifts of z>0.3. X-ray follow-up observations will be crucial in order to establish robust cluster luminosities for eMACS clusters. Although the small number of distant X-ray luminous clusters in the MDS does not allow us to make firm predictions for the over 20,000 deg^2 of extragalactic sky covered by eMACS, the identification of two extremely promising eMACS cluster candidates at z>0.6 (both yet to be observed with Chandra) in such a small solid angle is encouraging. Representing a tremendous gain over the presently known two dozen such systems from X-ray, optical, and SZ cluster surveys combined, the sample of over 100 extremely massive clusters at z>0.5 expected from eMACS would be invaluable for the identification of the most powerful gravitational lenses in the Universe, as well as for in-depth and statistical studies of the physical properties of the most massive galaxy clusters out to z~1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا