ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning models of the environment from data is often viewed as an essential component to building intelligent reinforcement learning (RL) agents. The common practice is to separate the learning of the model from its use, by constructing a model of t he environments dynamics that correctly predicts the observed state transitions. In this paper we argue that the limited representational resources of model-based RL agents are better used to build models that are directly useful for value-based planning. As our main contribution, we introduce the principle of value equivalence: two models are value equivalent with respect to a set of functions and policies if they yield the same Bellman updates. We propose a formulation of the model learning problem based on the value equivalence principle and analyze how the set of feasible solutions is impacted by the choice of policies and functions. Specifically, we show that, as we augment the set of policies and functions considered, the class of value equivalent models shrinks, until eventually collapsing to a single point corresponding to a model that perfectly describes the environment. In many problems, directly modelling state-to-state transitions may be both difficult and unnecessary. By leveraging the value-equivalence principle one may find simpler models without compromising performance, saving computation and memory. We illustrate the benefits of value-equivalent model learning with experiments comparing it against more traditional counterparts like maximum likelihood estimation. More generally, we argue that the principle of value equivalence underlies a number of recent empirical successes in RL, such as Value Iteration Networks, the Predictron, Value Prediction Networks, TreeQN, and MuZero, and provides a first theoretical underpinning of those results.
We present a novel method for learning a set of disentangled reward functions that sum to the original environment reward and are constrained to be independently obtainable. We define independent obtainability in terms of value functions with respect to obtaining one learned reward while pursuing another learned reward. Empirically, we illustrate that our method can learn meaningful reward decompositions in a variety of domains and that these decompositions exhibit some form of generalization performance when the environments reward is modified. Theoretically, we derive results about the effect of maximizing our methods objective on the resulting reward functions and their corresponding optimal policies.
This paper explores a simple regularizer for reinforcement learning by proposing Generative Adversarial Self-Imitation Learning (GASIL), which encourages the agent to imitate past good trajectories via generative adversarial imitation learning framew ork. Instead of directly maximizing rewards, GASIL focuses on reproducing past good trajectories, which can potentially make long-term credit assignment easier when rewards are sparse and delayed. GASIL can be easily combined with any policy gradient objective by using GASIL as a learned shaped reward function. Our experimental results show that GASIL improves the performance of proximal policy optimization on 2D Point Mass and MuJoCo environments with delayed reward and stochastic dynamics.
All-goals updating exploits the off-policy nature of Q-learning to update all possible goals an agent could have from each transition in the world, and was introduced into Reinforcement Learning (RL) by Kaelbling (1993). In prior work this was mostly explored in small-state RL problems that allowed tabular representations and where all possible goals could be explicitly enumerated and learned separately. In this paper we empirically explore 3 different extensions of the idea of updating many (instead of all) goals in the context of RL with deep neural networks (or DeepRL for short). First, in a direct adaptation of Kaelblings approach we explore if many-goals updating can be used to achieve mastery in non-tabular visual-observation domains. Second, we explore whether many-goals updating can be used to pre-train a network to subsequently learn faster and better on a single main task of interest. Third, we explore whether many-goals updating can be used to provide auxiliary task updates in training a network to learn faster and better on a single main task of interest. We provide comparisons to baselines for each of the 3 extensions.
This paper proposes Self-Imitation Learning (SIL), a simple off-policy actor-critic algorithm that learns to reproduce the agents past good decisions. This algorithm is designed to verify our hypothesis that exploiting past good experiences can indir ectly drive deep exploration. Our empirical results show that SIL significantly improves advantage actor-critic (A2C) on several hard exploration Atari games and is competitive to the state-of-the-art count-based exploration methods. We also show that SIL improves proximal policy optimization (PPO) on MuJoCo tasks.
In many sequential decision making tasks, it is challenging to design reward functions that help an RL agent efficiently learn behavior that is considered good by the agent designer. A number of different formulations of the reward-design problem, or close variants thereof, have been proposed in the literature. In this paper we build on the Optimal Rewards Framework of Singh et.al. that defines the optimal intrinsic reward function as one that when used by an RL agent achieves behavior that optimizes the task-specifying or extrinsic reward function. Previous work in this framework has shown how good intrinsic reward functions can be learned for lookahead search based planning agents. Whether it is possible to learn intrinsic reward functions for learning agents remains an open problem. In this paper we derive a novel algorithm for learning intrinsic rewards for policy-gradient based learning agents. We compare the performance of an augmented agent that uses our algorithm to provide additive intrinsic rewards to an A2C-based policy learner (for Atari games) and a PPO-based policy learner (for Mujoco domains) with a baseline agent that uses the same policy learners but with only extrinsic rewards. Our results show improved performance on most but not all of the domains.
This paper proposes a novel deep reinforcement learning (RL) architecture, called Value Prediction Network (VPN), which integrates model-free and model-based RL methods into a single neural network. In contrast to typical model-based RL methods, VPN learns a dynamics model whose abstract states are trained to make option-conditional predictions of future values (discounted sum of rewards) rather than of future observations. Our experimental results show that VPN has several advantages over both model-free and model-based baselines in a stochastic environment where careful planning is required but building an accurate observation-prediction model is difficult. Furthermore, VPN outperforms Deep Q-Network (DQN) on several Atari games even with short-lookahead planning, demonstrating its potential as a new way of learning a good state representation.
As a step towards developing zero-shot task generalization capabilities in reinforcement learning (RL), we introduce a new RL problem where the agent should learn to execute sequences of instructions after learning useful skills that solve subtasks. In this problem, we consider two types of generalizations: to previously unseen instructions and to longer sequences of instructions. For generalization over unseen instructions, we propose a new objective which encourages learning correspondences between similar subtasks by making analogies. For generalization over sequential instructions, we present a hierarchical architecture where a meta controller learns to use the acquired skills for executing the instructions. To deal with delayed reward, we propose a new neural architecture in the meta controller that learns when to update the subtask, which makes learning more efficient. Experimental results on a stochastic 3D domain show that the proposed ideas are crucial for generalization to longer instructions as well as unseen instructions.
In this paper, we introduce a new set of reinforcement learning (RL) tasks in Minecraft (a flexible 3D world). We then use these tasks to systematically compare and contrast existing deep reinforcement learning (DRL) architectures with our new memory -based DRL architectures. These tasks are designed to emphasize, in a controllable manner, issues that pose challenges for RL methods including partial observability (due to first-person visual observations), delayed rewards, high-dimensional visual observations, and the need to use active perception in a correct manner so as to perform well in the tasks. While these tasks are conceptually simple to describe, by virtue of having all of these challenges simultaneously they are difficult for current DRL architectures. Additionally, we evaluate the generalization performance of the architectures on environments not used during training. The experimental results show that our new architectures generalize to unseen environments better than existing DRL architectures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا