ترغب بنشر مسار تعليمي؟ اضغط هنا

The existence of light sterile neutrinos, as predicted in several models, can help to explain a number of observations starting from dark mater to recent anomalies in short baseline experiments. In this paper we consider two models - Left-Right Symme tric Zee model and Extended Seesaw model, that can naturally accommodate the presence of light sterile neutrinos in the eV to MeV mass scale. We perform a detailed study on the neutrinoless double beta decay process which receives major contributions from diagrams involving these light sterile neutrinos. Considering a number of theoretical and experimental constraints, including light neutrino masses and mixings, unitarity of the mixing matrix etc., we compare our predicted values of the half-life of neutrinoless double beta decay with the experimental limits. This can put significant constraints on the neutrino mass, active-sterile neutrino mixing and several other important parameters in these models.
We consider an effective field theory framework with three standard model (SM) gauge singlet right handed neutrinos, and an additional SM gauge singlet scalar field. The framework successfully generates eV masses of the light neutrinos via seesaw mec hanism, and accommodates a feebly interacting massive particle (FIMP) as dark matter candidate. Two of the gauge singlet neutrinos participate in neutrino mass generation, while the third gauge singlet neutrino is a FIMP dark matter. We explore the correlation between the $textit{vev}$ of the gauge singlet scalar field which translates as mass of the BSM Higgs, and the mass of dark matter, which arises due to relic density constraint. We furthermore explore the constraints from the light neutrino masses in this set-up. We chose the gauge singlet BSM Higgs in this framework in the TeV scale. We perform a detailed collider analysis to analyse the discovery prospect of the TeV scale BSM Higgs through its di-fatjet signature, at a future $pp$ collider which can operate with $sqrt{s}=100$ TeV c.m.energy.
61 - Sarif Khan 2020
In the present work, we have extended the standard model by an abelian $U(1)_{X}$ gauge group and additional particles. In particular, we have extended the particle content by three right handed neutrinos, two singlet scalars and two vector like lept ons. Charged assignments under different gauge groups are such that the model is gauge anomaly free and the anomaly contributions cancel among generations. Once the symmetry gets broken then three physical Higgses are produced, one axion like particle (ALP), which also acts as the keV scale FIMP dark matter, is produced and the remaining component is absorbed by the extra gauge boson. Firstly, we have successfully generated neutrino mass by the type-I seesaw mechanism for normal hierarchy with the $3sigma$ bound on the oscillation parameters. The ALP in the present model can explain the Xenon-1T electron recoil signal at keV scale through its coupling with the electron. We also have vector like leptons which help in producing the dark matter from their decay by the freeze in mechanism. Electron and tauon get mass from dimensional-5 operators at Planck scale and if we consider the vevs $v_{1,2} simeq 10^{12}$ GeV then we can obtain the correct value of the electron mass but not the tauon mass. Vector like leptons help in getting the correct value of the tauon mass through another higher dimensional operator which also has a role in DM production by the $2 rightarrow 2$ process, giving the correct ballpark value of relic density for suitable reheat temperature of the Universe. We have shown that the ALP production by the higher dimensional operator can explain the electron, tauon mass and Xenon-1T signal simultaneously whereas the decay production can not explain all of them together.
In this work, we discuss two component fermionic FIMP dark matter (DM) in a popular $B-L$ extension of the standard model (SM) with inverse seesaw mechanism. Due to the introduced $mathbb{Z}_{2}$ discrete symmetry, a keV SM gauge singlet fermion is s table and can be a warm DM candidate. Also, this $mathbb{Z}_{2}$ symmetry helps the lightest right-handed neutrino, with mass of order GeV, to be a long-lived or stable particle by choosing a corresponding Yukawa coupling to be very small. Firstly, in the absence of a GeV DM component (i.e., without tuning its corresponding Yukawa coupling), we consider only a keV DM as a single component DM produced by the freeze-in mechanism. Secondly, we study a two component FIMP DM scenario and emphasize that the correct ballpark DM relic density bound can be achieved for a wide parameter space.
It is well known that for the pure standard model triplet fermionic WIMP-type dark matter (DM), the relic density is satisfied around 2 TeV. For such a heavy mass particle, the production cross-section at 13 TeV run of LHC will be very small. Extendi ng the model further with a singlet fermion and a triplet scalar, DM relic density can be satisfied for even much lower masses. The lower mass DM can be copiously produced at LHC and hence the model can be tested at collider. For the present model we have studied the multi jet ($geq 2,j$) + missing energy ($cancel{E}_{T}$) signal and show that this can be detected in the near future of the LHC 13 TeV run. We also predict that the present model is testable by the earth based DM direct detection experiments like Xenon-1T and in future by Darwin.
The Standard Model (SM) is inadequate to explain the origin of tiny neutrino masses, the dark matter (DM) relic abundance and also the baryon asymmetry of the Universe. In this work to address all the three puzzles, we extend the SM by a local U$(1)_ {rm B-L}$ gauge symmetry, three right-handed (RH) neutrinos for the cancellation of gauge anomalies and two complex scalars having nonzero U$(1)_{rm B-L}$ charges. All the newly added particles become massive after the breaking of U$(1)_{rm B-L}$ symmetry by the vacuum expectation value (VEV) of one of the scalar fields $phi_H$. The other scalar field $phi_{DM}$, which does not have any VEV, becomes automatically stable and can be a viable DM candidate. Neutrino masses are generated using Type-I seesaw mechanism while the required lepton asymmetry to reproduce the observed baryon asymmetry, can be attained from the CP violating out of equilibrium decays of RH neutrinos in TeV scale. More importantly within this framework, we have studied in detail the production of DM via freeze-in mechanism considering all possible annihilation and decay processes. Finally, we find a situation when DM is dominantly produced from the annihilation of RH neutrinos, which are at the same time also responsible for neutrino mass generation and leptogenesis.
The tightening of the constraints on the standard thermal WIMP scenario has forced physicists to propose alternative dark matter (DM) models. One of the most popular alternate explanations of the origin of DM is the non-thermal production of DM via f reeze-in. In this scenario the DM never attains thermal equilibrium with the thermal soup because of its feeble coupling strength ($sim 10^{-12}$) with the other particles in the thermal bath and is generally called the Feebly Interacting Massive Particle (FIMP). In this work, we present a gauged U(1)$_{L_{mu}-L_{tau}}$ extension of the Standard Model (SM) which has a scalar FIMP DM candidate and can consistently explain the DM relic density bound. In addition, the spontaneous breaking of the U(1)$_{L_{mu}-L_{tau}}$ gauge symmetry gives an extra massive neutral gauge boson $Z_{mutau}$ which can explain the muon ($g-2$) data through its additional one-loop contribution to the process. Lastly, presence of three right-handed neutrinos enable the model to successfully explain the small neutrino masses via the Type-I seesaw mechanism. The presence of the spontaneously broken U(1)$_{L_{mu}-L_{tau}}$ gives a particular structure to the light neutrino mass matrix which can explain the peculiar mixing pattern of the light neutrinos.
The observation of neutrino masses, mixing and the existence of dark matter are amongst the most important signatures of physics beyond the Standard Model (SM). In this paper, we propose to extend the SM by a local $L_mu - L_tau$ gauge symmetry, two additional complex scalars and three right-handed neutrinos. The $L_mu - L_tau$ gauge symmetry is broken spontaneously when one of the scalars acquires a vacuum expectation value. The $L_mu - L_tau$ gauge symmetry is known to be anomaly free and can explain the beyond SM measurement of the anomalous muon $({rm g-2})$ through additional contribution arising from the extra $Z_{mutau}$ mediated diagram. Small neutrino masses are explained naturally through the Type-I seesaw mechanism, while the mixing angles are predicted to be in their observed ranges due to the broken $L_mu-L_tau$ symmetry. The second complex scalar is shown to be stable and becomes the dark matter candidate in our model. We show that while the $Z_{mutau}$ portal is ineffective for the parameters needed to explain the anomalous muon $({rm g-2})$ data, the correct dark matter relic abundance can easily be obtained from annihilation through the Higgs portal. Annihilation of the scalar dark matter in our model can also explain the Galactic Centre gamma ray excess observed by Fermi-LAT. We show the predictions of our model for future direct detection experiments and neutrino oscillation experiments.
In this work, we have considered a gauged $U(1)_{rm B-L}$ extension of the Standard Model (SM) with three right handed neutrinos for anomaly cancellation and two additional SM singlet complex scalars with non-trivial B-L charges. One of these is used to spontaneously break the $U(1)_{rm B-L}$ gauge symmetry, leading to Majorana masses for the neutrinos through the standard Type I seesaw mechanism, while the other becomes the dark matter (DM) candidate in the model. We test the viability of the model to simultaneously explain the DM relic density observed in the CMB data as well as the Galactic Centre (GC) $gamma$-ray excess seen by Fermi-LAT. We show that for DM masses in the range 40-55 GeV and for a wide range of $U(1)_{rm B-L}$ gauge boson masses, one can satisfy both these constraints if the additional neutral Higgs scalar has a mass around the resonance region. In studying the dark matter phenomenology and GC excess, we have taken into account theoretical as well as experimental constraints coming from vacuum stability condition, PLANCK bound on DM relic density, LHC and LUX and present allowed areas in the model parameter space consistent with all relevant data, calculate the predicted gamma ray flux from the GC and discuss the related phenomenology.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا