ترغب بنشر مسار تعليمي؟ اضغط هنا

294 - Sara Lucatello 2010
We present the N, O, F and Na abundance and 12C/13C isotopic ratio measurements or upper limits for a sample of 10 C-rich, metal-poor giant stars, eight enhanced in s-process (CEMP-s) elements and two poor in n-capture elements (CEMP-no). The abundan ces are derived from IR, K-band, high-resolution CRIRES@VLT spectra obtained. The metallicity of our sample ranges from [Fe/H]=-3.4 to -1.3. F abundance could be measured only in two CEMP-s stars. With [F/Fe]=0.64, one is mildly F-overabundant, while the other is F-rich, at [F/Fe]=1.44. For the remaining eight objects, including both CEMP-no in our sample, only upper limits on F abundance could be placed. Our measurements and upper limits show that there is a spread in [F/C+N] ratio in CEMP-s stars as predicted by theory. Predictions from nucleosynthetic models for low-mass, low-metallicity Asymptotic Giant Branch stars, account for the derived F abundances, while the upper limits on F content derived for most of the stars are lower than the predicted values. The measured Na content is accounted for by AGB models in the 1.25 to 1.7 Msun range, confirming that the stars responsible for the peculiar abundance pattern observed in CEMP-s stars are low-mass, low-metallicity AGB stars, in agreement with the most accepted astrophysical scenario. We conclude that the mechanism of F production in current state-of-the-art low-metallicity low-mass AGB models needs further scrutiny and that F measurements in a larger number of metal-poor stars are needed to better constraint the models.
Previous surveys in a few metal-poor globular clusters (GCs) showed that the determination of abundances for Li and proton-capture elements offers a key tool to address the intracluster pollution scenario. In this Letter, we present Na, O, and Li abu ndances in a large sample of dwarf stars in the metal-rich GC 47 Tucanae. We found a clear Na-O anticorrelation, in good agreement with what obtained for giant members by Carretta et al. While lithium and oxygen abundances appear to be positively correlated with each other, there is a large scatter, well exceeding observational errors, and no anticorrelation with sodium. These findings suggest that Li depletion, due to mechanisms internal to the stars (which are cooler and more metal-rich than those on the Spite plateau), combines with the usual pollution scenario responsible for the Na-O anticorrelation.
We present the first results from the analysis of GIRAFFE spectra of more than 1200 red giants stars in 19 Galactic Globular Clusters (GCs), to study the chemical composition of second generation stars and their link with global cluster parameters. W e confirm that the extension of the Na-O anticorrelation (the most striking signature of polluted, second generation populations) is strictly related to the very blue (and hot) extreme of the Horizontal Branch (HB). Long anticorrelations seem to require large mass and large-sized, eccentric orbits, taking the GCs far away from the central regions of the Galaxy. We can separate three populations in each cluster (primordial, intermediate and extreme) based on the chemical composition. In all GCs we observe a population of primordial composition, similar to field stars of similar metallicity. We find that in all GCs the bulk (from 50 to 70%) of stars belong to the intermediate component. Finally, the extreme, very oxygen-poor component is observed preferentially in massive clusters, but is not present in all massive GCs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا