ترغب بنشر مسار تعليمي؟ اضغط هنا

High-speed tracking of single particles is a gateway to understanding physical, chemical, and biological processes at the nanoscale. It is also a major experimental challenge, particularly for small, nanometer-scale particles. Although methods such a s confocal or fluorescence microscopy offer both high spatial resolution and high signal-to-background ratios, the fluorescence emission lifetime limits the measurement speed, while photobleaching and thermal diffusion limit the duration of measurements. Here we present a tracking method based on elastic light scattering that enables long-duration measurements of nanoparticle dynamics at rates of thousands of frames per second. We contain the particles within a single-mode silica fiber containing a sub-wavelength, nano-fluidic channel and illuminate them using the fibers strongly confined optical mode. The diffusing particles in this cylinderical geometry are continuously illuminated inside the collection focal plane. We show that the method can track unlabeled dielectric particles as small as 20 nm as well as individual cowpea chlorotic mottle virus (CCMV) virions - 4.6 megadaltons in size - at rates of over 2 kHz for durations of tens of seconds. Our setup is easily incorporated into common optical microscopes and extends their detection range to nanometer-scale particles and macromolecules. The ease-of-use and performance of this technique support its potential for widespread applications in medical diagnostics and micro total analysis systems.
Single molecules that exhibit narrow optical transitions at cryogenic temperatures can be used as local electric-field sensors. We derive the single charge sensitivity of aromatic organic dye molecules, based on first principles. Through numerical mo deling, we demonstrate that by using currently available technologies it is possible to optically detect charging events in a granular network with a sensitivity better than $10^{-5}e/sqrt{textrm{Hz}}$ and track positions of multiple electrons, simultaneously, with nanometer spatial resolution. Our results pave the way for minimally-invasive optical inspection of electronic and spintronic nanodevices and building hybrid optoelectronic interfaces that function at both single-photon and single-electron levels.
Cavity-free efficient coupling between emitters and guided modes is of great current interest for nonlinear quantum optics as well as efficient and scalable quantum information processing. In this work, we extend these activities to the coupling of o rganic dye molecules to a highly confined mode of a nanofiber, allowing mirrorless and low-threshold laser action in an effective mode volume of less than 100 femtoliters. We model this laser system based on semi-classical rate equations and present an analytic compact form of the laser output intensity. Despite the lack of a cavity structure, we achieve a coupling efficiency of the spontaneous emission to the waveguide mode of 0.07(0.01), in agreement with our calculations. In a further experiment, we also demonstrate the use of a plasmonic nanoparticle as a dispersive output coupler. Our laser architecture is promising for a number of applications in optofluidics and provides a fundamental model system for studying nonresonant feedback stimulated emission.
The intensity distribution of electromagnetic polar waves in a chain of near-resonant weakly-coupled scatterers is investigated theoretically and supported by a numerical analysis. Critical scaling behavior is discovered for part of the eigenvalue sp ectrum due to the disorder-induced Anderson transition. This localization transition (in a formally one-dimensional system) is attributed to the long-range dipole-dipole interaction, which decays inverse linearly with distance for polarization perpendicular to the chain. For polarization parallel to the chain, with inverse squared long range coupling, all eigenmodes are shown to be localized. A comparison with the results for Hermitian power-law random banded matrices and other intermediate models is presented. This comparison reveals the significance of non-Hermiticity of the model and the periodic modulation of the coupling.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا