ﻻ يوجد ملخص باللغة العربية
Cavity-free efficient coupling between emitters and guided modes is of great current interest for nonlinear quantum optics as well as efficient and scalable quantum information processing. In this work, we extend these activities to the coupling of organic dye molecules to a highly confined mode of a nanofiber, allowing mirrorless and low-threshold laser action in an effective mode volume of less than 100 femtoliters. We model this laser system based on semi-classical rate equations and present an analytic compact form of the laser output intensity. Despite the lack of a cavity structure, we achieve a coupling efficiency of the spontaneous emission to the waveguide mode of 0.07(0.01), in agreement with our calculations. In a further experiment, we also demonstrate the use of a plasmonic nanoparticle as a dispersive output coupler. Our laser architecture is promising for a number of applications in optofluidics and provides a fundamental model system for studying nonresonant feedback stimulated emission.
Optical high-finesse cavities are a well-known mean to enhance light-matter interactions. Despite large progress in the realization of strongly coupled light-matter systems, the controlled positioning of single solid emitters in cavity modes remains
Linearly polarized light can exert a torque on a birefringent object when passing through it. This phenomena, present in Maxwells equations, was revealed by Poynting and beautifully demonstrated in the pioneer experiments of Beth and Holbourn. Modern
Vectorially structured light has emerged as an enabling tool in many diverse applications, from communication to imaging, exploiting quantum-like correlations courtesy of a non-separable spatially varying polarization structure. Creating these states
We demonstrate the fabrication of ultra-low-loss, all-fiber Fabry-Perot cavities containing a nanofiber section, optimized for cavity quantum electrodynamics. By continuously monitoring the finesse and fiber radius during fabrication of a nanofiber b
We propose a novel supersymmetry-inspired scheme for achieving robust single mode lasing in arrays of coupled microcavities, based on factorizing a given array Hamiltonian into its supercharge partner array. Pumping a single sublattice of the partner