ترغب بنشر مسار تعليمي؟ اضغط هنا

The distinctive cometary X-ray morphology of the recently discovered massive galaxy cluster El Gordo (ACT-CT J0102-4915; z=0.87) indicates that an unusually high-speed collision is ongoing between two massive galaxy clusters. A bright X-ray bullet le ads a twin-tailed wake, with the SZ centroid at the end of the Northern tail. We show how the physical properties of this system can be determined using our FLASH-based, N-body/hydrodynamic model, constrained by detailed X-ray, Sunyaev-Zeldovich (SZ), and Hubble lensing and dynamical data. The X-ray morphology and the location of the two Dark Matter components and the SZ peak are accurately described by a simple binary collision viewed about 480 million years after the first core passage. We derive an impact parameter of ~300 kpc, and a relative initial infall velocity of ~2250 km/sec when separated by the sum of the two virial radii assuming an initial total mass of 2.15x10^(15) Msun and a mass ratio of 1.9. Our model demonstrates that tidally stretched gas accounts for the Northern X-ray tail along the collision axis between the mass peaks, and that the Southern tail lies off axis, comprising compressed and shock heated gas generated as the massive component plunges through the main cluster. The challenge for LCDM will be to find out if this physically extreme event can be plausibly accommodated when combined with the similarly massive, high infall velocity case of the Bullet cluster and other such cases being uncovered in the new SZ based surveys.
Since the discovery of the bullet cluster several similar cases have been uncovered suggesting relative velocities well beyond the tail of high speed collisions predicted by the concordance LCDM model. However, quantifying such post-merger events wit h hydrodynamical models requires a wide coverage of possible initial conditions. Here we show that it is simpler to interpret pre-merger cases, such as A1750, where the gas between the colliding clusters is modestly affected, so that the initial conditions are clear. We analyze publicly available Chandra data confirming a significant increase in the projected X-ray temperature between the two cluster centers in A1750 consistent with our expectations for a merging cluster. We model this system with a self-consistent hydrodynamical simulation of dark matter and gas using the FLASH code. Our simulations reproduce well the X-ray data, and the measured redshift difference between the two clusters in the phase before the first core passage viewed at an intermediate projection angle. The deprojected initial relative velocity derived using our model is 1460 km/sec which is considerably higher than the predicted mean impact velocity for simulated massive haloes derived by recent LCDM cosmological simulations, but it is within the allowed range. Our simulations demonstrate that such systems can be identified using a multi-wavelength approach and numerical simulations, for which the statistical distribution of relative impact velocities may provide a definitive examination of a broad range of dark matter scenarios.
125 - Sandor M. Molnar 2013
We show that the fast moving component of the bullet cluster (1E0657-56) can induce potentially resolvable redshift differences between multiply-lensed images of background galaxies. The moving cluster effect can be expressed as the scalar product of the lensing deflection angle with the tangential velocity of the mass components, and it is maximal for clusters colliding in the plane of the sky with velocities boosted by their mutual gravity. The bullet cluster is likely to be the best candidate for the first measurement of this effect due to the large collision velocity and because the lensing deflection and the cluster fields can be calculated in advance. We derive the deflection field using multiply-lensed background galaxies detected with the Hubble Space Telescope. The velocity field is modeled using self-consistent N-body/hydrodynamical simulations constrained by the observed X-ray and gravitational lensing features of this system. We predict that the triply-lensed images of systems G and H straddling the critical curve of the bullet component will show the largest frequency shifts up to ~0.5 km/sec. This is within the range of the Atacama Large Millimeter/sub-millimeter Array (ALMA) for molecular emission, and is near the resolution limit of the new generation high-throughput optical-IR spectrographs. A detection of this effect measures the tangential motion of the subclusters directly, thereby clarifying the tension with LCDM, which is inferred from gas motion less directly. This method may be extended to smaller redshift differences using the Ly-alpha forest towards QSOs lensed by more typical clusters of galaxies. More generally, the tangential component of the peculiar velocities of clusters derived by our method complements the radial component determined by the kinematic SZ effect, providing a full 3-dimensional description of velocities.
We test the assumption of strict hydrostatic equilibrium in galaxy cluster MS2137.3-2353 (MS 2137) using the latest CHANDRA X-ray observations and results from a combined strong and weak lensing analysis based on optical observations. We deproject th e two-dimensional X-ray surface brightness and mass surface density maps assuming spherical and spheroidal dark matter distributions. We find a significant, 40%-50%, contribution from non-thermal pressure in the core assuming a spherical model. This non-thermal pressure support is similar to what was found by Molnar et al. (2010) using a sample of massive relaxed clusters drawn from high resolution cosmological simulations. We have studied hydrostatic equilibrium in MS 2137 under the assumption of elliptical cluster geometry adopting prolate models for the dark matter density distribution with different axis ratios. Our results suggest that the main effect of ellipticity (compared to spherical models) is to decrease the non-thermal pressure support required for equilibrium at all radii without changing the distribution qualitatively. We find that a prolate model with an axis ratio of 1.25 (axis in the line of sight over perpendicular to it) provides a physically acceptable model implying that MS 2137 is close to hydrostatic equilibrium at about 0.04-0.15 Rvir and have an about 25% contribution from non-thermal pressure at the center. Our results provide further evidence that there is a significant contribution from non-thermal pressure in the core region of even relaxed clusters, i.e., the assumption of hydrostatic equilibrium is not valid in this region, independently of the assumed shape of the cluster.
95 - Sandor M. Molnar , 2012
Galaxy clusters, the most massive collapsed structures, have been routinely used to determine cosmological parameters. When using clusters for cosmology, the crucial assumption is that they are relaxed. However, subarcminute resolution Sunyaev-Zeldov ich (SZ) effect images compared with high resolution X-ray images of some clusters show significant offsets between the two peaks. We have carried out self-consistent N-body/hydrodynamical simulations of merging galaxy clusters using FLASH to study these offsets quantitatively. We have found that significant displacements result between the SZ and X-ray peaks for large relative velocities for all masses used in our simulations as long as the impact parameters were about 100-250 kpc. Our results suggest that the SZ peak coincides with the peak in the pressure times the line-of-sight characteristic length and not the pressure maximum (as it would for clusters in equilibrium). The peak in the X-ray emission, as expected, coincides with the density maximum of the main cluster. As a consequence, the morphology of the SZ signal and therefore the offset between the SZ and X-ray peaks change with viewing angle. As an application, we compare the morphologies of our simulated images to observed SZ and X-ray images and mass surface densities derived from weak lensing observations of the merging galaxy cluster CL0152-1357. We find that a large relative velocity of 4800 km/s is necessary to explain these observations. We conclude that an analysis of the morphologies of multi-frequency observations of merging clusters can be used to put meaningful constraints on the initial parameters of the progenitors.
Clusters of galaxies have been used extensively to determine cosmological parameters. A major difficulty in making best use of Sunyaev-Zeldovich (SZ) and X-ray observations of clusters for cosmology is that using X-ray observations it is difficult to measure the temperature distribution and therefore determine the density distribution in individual clusters of galaxies out to the virial radius. Observations with the new generation of SZ instruments are a promising alternative approach. We use clusters of galaxies drawn from high-resolution adaptive mesh refinement (AMR) cosmological simulations to study how well we should be able to constrain the large-scale distribution of the intra-cluster gas (ICG) in individual massive relaxed clusters using AMiBA in its configuration with 13 1.2-m diameter dishes (AMiBA13) along with X-ray observations. We show that non-isothermal beta models provide a good description of the ICG in our simulated relaxed clusters. We use simulated X-ray observations to estimate the quality of constraints on the distribution of gas density, and simulated SZ visibilities (AMiBA13 observations) for constraints on the large-scale temperature distribution of the ICG. We find that AMiBA13 visibilities should constrain the scale radius of the temperature distribution to about 50% accuracy. We conclude that the upgraded AMiBA, AMiBA13, should be a powerful instrument to constrain the large-scale distribution of the ICG.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا