ترغب بنشر مسار تعليمي؟ اضغط هنا

The synthesis and characterization of vanadium-based kagome metals YV$_6$Sn$_6$ and GdV$_6$Sn$_6$ are presented. X-ray diffraction, magnetization, magnetotransport, and heat capacity measurements reveal an ideal kagome network of V-ions coordinated b y Sn and separated by triangular lattice planes of rare-earth ions. The onset of low-temperature, likely noncollinear, magnetic order of Gd spins is detected in GdV$_6$Sn$_6$, while V-ions in both compounds remain nonmagnetic. Density functional theory calculations are presented modeling the band structures of both compounds, which can be classified as $mathbb{Z}_2$ topological metals in the paramagnetic state. Both compounds exhibit high mobility, multiband transport and present an interesting platform for controlling the interplay between magnetic order associated with the $R$-site sublattice and nontrivial band topology associated with the V-based kagome network. Our results invite future exploration of other $R$V$_6$Sn$_6$ ($R$=rare earth) variants where this interplay can be tuned via $R$-site substitution.
While several magnetic topological semimetals have been discovered in recent years, their band structures are far from ideal, often obscured by trivial bands at the Fermi energy. Square-net materials with clean, linearly dispersing bands show potenti al to circumvent this issue. CeSbTe, a square-net material, features multiple magnetic field-controllable topological phases. Here, it is shown that in this material, even higher degrees of tunability can be achieved by changing the electron count at the square-net motif. Increased electron filling results in structural distortion and formation of charge density waves (CDWs). The modulation wave-vector evolves continuously leading to a region of multiple discrete CDWs and a corresponding complex Devils staircase magnetic ground state. A series of fractionally quantized magnetization plateaus are observed, which implies direct coupling between CDW and a collective spin-excitation. It is further shown that the CDW creates a robust idealized non-symmorphic Dirac semimetal, thus providing access to topological systems with rich magnetism.
The new two-dimensional (2D) kagome superconductor CsV$_3$Sb$_5$ has attracted much recent attention due to the coexistence of superconductivity, charge order, topology and kagome physics. A key issue in this field is to unveil the unique reconstruct ed electronic structure, which successfully accommodates different orders and interactions to form a fertile ground for emergent phenomena. Here, we report angle-resolved photoemission spectroscopy (ARPES) evidence for two distinct band reconstructions in CsV$_3$Sb$_5$. The first one is characterized by the appearance of new electron energy band at low temperature. The new band is theoretically reproduced when the three dimensionality of the charge order is considered for a band-folding along the out-of-plane direction. The second reconstruction is identified as a surface induced orbital-selective shift of the electron energy band. Our results provide the first evidence for the three dimensionality of the charge order in single-particle spectral function, highlighting the importance of long-range out-of-plane electronic correlations in this layered kagome superconductor. They also point to the feasibility of orbital-selective control of the band structure via surface modification, which would open a new avenue for manipulating exotic phenomena in this system, including superconductivity.
The diversity of emergent phenomena in quantum materials often arises from the interplay between different physical energy scales or broken symmetries. Cooperative interactions among them are rare; however, when they do occur, they often stabilize fu ndamentally new ground states or phase behaviors. For instance, a pair density wave can form when the superconducting order parameter borrows spatial periodical variation from charge order; a topological superconductor can arise when topologically nontrivial electronic states proximitize with or participate in the formation of the superconducting condensate. Here, we report spectroscopic evidence for a unique synergy of topology and correlation effects in the kagome superconductor CsV$_3$Sb$_5$ - one where topologically nontrivial surface states are pushed below the Fermi energy (E$_F$) by charge order, making the topological physics active near E$_F$ upon entering the superconducting state. Flat bands are observed, indicating that electron correlation effects are also at play in this system. Our results reveal the peculiar electronic structure of CsV$_3$Sb$_5$, which holds the potential for realizing Majorana zero modes and anomalous superconducting states in kagome lattices. They also establish CsV$_3$Sb$_5$ as a unique platform for exploring the cooperation between the charge order, topology, correlation effects and superconductivity.
The recently discovered family of AV$_3$Sb$_5$ (A: K, Rb Cs) kagome metals possess a unique combination of nontrivial band topology, superconducting ground states, and signatures of electron correlations manifest via competing charge density wave ord er. Little is understood regarding the nature of the charge density wave (CDW) instability inherent to these compounds and the potential correlation with the accompanying onset of a large anomalous Hall response. To understand the impact of the CDW order on the electronic structure in these systems, we present quantum oscillation measurements on single crystals of CsV$_3$Sb$_5$. Our data provides direct evidence that the CDW invokes a substantial reconstruction of the Fermi surface pockets associated with the vanadium orbitals and the kagome lattice framework. In conjunction with density functional theory modeling, we are able to identify split oscillation frequencies originating from reconstructed pockets built from vanadium orbitals and Dirac-like bands. Complementary diffraction measurements are further able to demonstrate that the CDW instability has a correlated phasing between neighboring V$_3$Sb$_5$ planes. These results provide critical insights into the underlying CDW instability in AV$_3$Sb$_5$ kagome metals and support minimal models of CDW order arising from within the vanadium-based kagome lattice.
New developments in the field of topological matter are often driven by materials discovery, including novel topological insulators, Dirac semimetals and Weyl semimetals. In the last few years, large efforts have been performed to classify all known inorganic materials with respect to their topology. Unfortunately, a large number of topological materials suffer from non-ideal band structures. For example, topological bands are frequently convoluted with trivial ones, and band structure features of interest can appear far below the Fermi level. This leaves just a handful of materials that are intensively studied. Finding strategies to design new topological materials is a solution. Here we introduce a new mechanism that is based on charge density waves and non-symmorphic symmetry to design an idealized Dirac semimetal. We then show experimentally that the antiferromagnetic compound GdSb$_{0.46}$Te$_{1.48}$ is a nearly ideal Dirac semimetal based on the proposed mechanism, meaning that most interfering bands at the Fermi level are suppressed. Its highly unusual transport behavior points to a thus far unknown regime, in which Dirac carriers with Fermi energy very close to the node seem to gradually localize in the presence of lattice and magnetic disorder.
Principles that predict reactions or properties of materials define the discipline of chemistry. In this work we derive chemical rules, based on atomic distances and chemical bond character, which predict topological materials in compounds that featu re the structural motif of a square-net. Using these rules we identify over 300 potential new topological materials. We show that simple chemical heuristics can be a powerful tool to characterize topological matter. In contrast to previous database-driven materials categorization our approach allows us to identify candidates that are alloys, solid-solutions, or compounds with statistical vacancies. While previous material searches relied on density functional theory, our approach is not limited by this method and could also be used to discover magnetic and statistically-disordered topological semimetals.
The ferromagnetic phase of the cubic antiperovskite Mn$_3$ZnC is suggested from first-principles calculation to be a nodal line Weyl semimetal. Features in the electronic structure that are the hallmark of a nodal line Weyl state, a large density of linear band crossings near the Fermi level, can also be interpreted as signatures of a structural and/or magnetic instability. Indeed, it is known that Mn$_3$ZnC undergoes transitions upon cooling from a paramagnetic to a cubic ferromagnetic state under ambient conditions and then further into a non-collinear ferrimagnetic tetragonal phase at a temperature between 250$,$K and 200$,$K. The existence of Weyl nodes and their destruction via structural and magnetic ordering is likely to be relevant to a range of magnetostructurally coupled materials.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا