ترغب بنشر مسار تعليمي؟ اضغط هنا

We obtained UV spectra of X-ray binary Scorpius X-1 in the 900-1200 A range with the Far Ultraviolet Spectroscopic Explorer over the full 0.79 day binary orbit. The strongest emission lines are the doublet of O VI at 1032,1038 A and the C III complex at 1175 A. The spectrum is affected by a multitude of narrow interstellar absorption lines, both atomic and molecular. Examination of line variability and Doppler tomograms suggests emission from both the neighborhood of the donor star and the accretion disk. Models of turbulence and Doppler broadened Keplerian disk lines Doppler shifted with the orbit of the neutron star added to narrow Gaussian emission lines with undetermined Doppler shift fit the data with consistent values of disk radius, inclination, and radial line brightness profile. The Doppler shift of the narrow component with the orbit suggests an association with the donor star. We test our line models with previously analyzed near UV spectra obtained with the Hubble Space Telescope Goddard High Resolution Spectrograph and archival spectra obtained with the HST Cosmic Origins Spectrograph.
Orbital variability has been found in the X-ray hardness of the black hole candidate Cygnus X-1 during the soft/high X-ray state using light curves provided by the Rossi X-ray Timing Explorers All Sky Monitor. We are able to set broad limits on how t he mass-loss rate and X-ray luminosity vary between the hard and soft states. The folded light curve shows diminished flux in the soft X-ray band at phase 0 (defined as the time of of the superior conjunction of the X-ray source). Models of the orbital variability provide slightly superior fits when the absorbing gas is concentrated in neutral clumps and better explain the strong variability in hardness. In combination with the previously established hard/low state dips, our observations give a lower limit to the mass loss rate in the soft state (Mdot<2x10^{-6} Msun/yr) than the limit in the hard state (Mdot<4x10^{-6} Msun/yr). Without a change in the wind structure between X-ray states, the greater mass-loss rate during the low/hard state would be inconsistent with the increased flaring seen during the high-soft state.
We observed an entire 1.7 day orbit of the X-ray binary Hercules X-1 with the Far Ultraviolet Spectroscopic Explorer (FUSE). Changes in the O VI 1032,1037 line profiles through eclipse ingress and egress indicate a Keplerian accretion disk spinning p rograde with the orbit. These observations may show the first double-peaked accretion disk line profile to be seen in the Hercules X-1 system. Doppler tomograms of the emission lines show a bright spot offset from the Roche lobe of the companion star HZ Her, but no obvious signs of the accretion disk. Simulations show that the bright spot is too far offset from the Roche lobe to result from uneven X-ray heating of its surface. The absence of disk signatures in the tomogram can be reproduced in simulations which include absorption from a stellar wind. We attempt to diagnose the state of the emitting gas from the C III 977, C III 1175, and N III 991 emission lines. The latter may be enhanced through Bowen fluorescence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا