ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray Variations at the Orbital Period from Cygnus X-1 in the High/Soft State

186   0   0.0 ( 0 )
 نشر من قبل Bram Boroson
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Orbital variability has been found in the X-ray hardness of the black hole candidate Cygnus X-1 during the soft/high X-ray state using light curves provided by the Rossi X-ray Timing Explorers All Sky Monitor. We are able to set broad limits on how the mass-loss rate and X-ray luminosity vary between the hard and soft states. The folded light curve shows diminished flux in the soft X-ray band at phase 0 (defined as the time of of the superior conjunction of the X-ray source). Models of the orbital variability provide slightly superior fits when the absorbing gas is concentrated in neutral clumps and better explain the strong variability in hardness. In combination with the previously established hard/low state dips, our observations give a lower limit to the mass loss rate in the soft state (Mdot<2x10^{-6} Msun/yr) than the limit in the hard state (Mdot<4x10^{-6} Msun/yr). Without a change in the wind structure between X-ray states, the greater mass-loss rate during the low/hard state would be inconsistent with the increased flaring seen during the high-soft state.



قيم البحث

اقرأ أيضاً

540 - W. Cui 1996
We reported previously that for Cyg X-1 there is a settling period following the transition from hard to soft state (astro-ph/9610071). During the transiton, The low energy spectrum (below ~10 keV) varies significantly from observation to observation while the high energy portion changes little. The source reaches nominal soft-state brightness during the settling period. It can be characterized by a soft low-energy spectrum and significant low-frequency 1/f noise and white noise on the power density spectrum (PDS). The low-energy spectrum becomes even softer, and the PDS is completely dominated by the 1/f noise, when the ``true soft state is reached. In this paper, subsequent RXTE observations of Cyg X-1 in the soft state are examined, and the results confirm our earlier conclusions. Furthermore, we show the results from observations taken during a soft-to-hard transition. As expected, the white noise appears again, and accordingly, the 1/f noise becomes less dominant, similar to the settling period at the end of the hard-to-soft transition. The low-frequency 1/f noise has not been observed when Cyg X-1 is in the hard state. Therefore, it seems to be positively correlated with the disk mass accretion rate which is low in the hard state and high in the soft state. The difference in the observed spectral and timing properties between the hard and soft states is qualitatively consistent with a simple ``fluctuating corona model (astro-ph/9610071). Here we present more evidence for it.
(Shortened) Ultraviolet observations of the black hole X-ray binary Cygnus X-1 were obtained using the STIS on HSTubble. We detect P Cygni line features show strong, broad absorption components when the X-ray source is behind the companion star and n oticeably weaker absorption when the X-ray source is between us and the companion star. We fit the P Cygni profiles using the SEI method applied to a spherically symmetric stellar wind subject to X-ray photoionization from the black hole. The Si IV doublet provides the most reliable estimates of the parameters of the wind and X-ray illumination. The velocity $v$ increases with radius $r$ according to $v=v_infty(1-r_star/r)^beta$, with$betaapprox0.75$ and $v_inftyapprox1420$ km s$^{-1}$.The microturbulent velocity was $approx160$ km s$^{-1}$. Our fit implies a ratio of X-ray luminosity to wind mass-loss rate of L$_{X,38}/dot M_{-6} approx 0.33$, measured at $dot M_{-6}$ = 4.8. Our models determine parameters that may be used to estimate the accretion rate onto the black hole and independently predict the X-ray luminosity. Our predicted L$_x$ matches that determined by contemporaneous RXTE ASM remarkably well, but is a factor of 3 lower than the rate according to Bondi-Hoyle-Littleton spherical wind accretion. We suggest that some of the energy of accretion may go into powering a jet.
We present observations of a transient He-like Fe K alpha absorption line in Suzaku observations of the black hole binary Cygnus X-1 on 2011 October 5 near superior conjunction during the high/soft state, which enable us to map the full evolution fro m the start and the end of the episodic accretion phenomena or dips for the first time. We model the X-ray spectra during the event and trace their evolution. The absorption line is rather weak in the first half of the observation, but instantly deepens for ~10 ks, and weakens thereafter. The overall change in equivalent width is a factor of ~3, peaking at an orbital phase of ~0.08. This is evidence that the companion stellar wind feeding the black hole is clumpy. By analyzing the line with a Voigt profile, it is found to be consistent with a slightly redshifted Fe XXV transition, or possibly a mixture of several species less ionized than Fe XXV. The data may be explained by a clump located at a distance of ~10^(10-12) cm with a density of ~10^((-13)-(-11)) g cm^-3, which accretes onto and/or transits the line-of-sight to the black hole, causing an instant decrease in the observed degree of the ionization and/or an increase in density of the accreting matter. Continued monitoring for individual events with future X-ray calorimeter missions such as ASTRO-H and AXSIO will allow us to map out the accretion environment in detail and how it changes between the various accretion states.
223 - John A. Tomsick 2013
The black hole binary Cygnus X-1 was observed in late-2012 with the Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku, providing spectral coverage over the ~1-300 keV range. The source was in the soft state with a multi-temperature blackbody, power-law, and reflection components along with absorption from highly ionized material in the system. The high throughput of NuSTAR allows for a very high quality measurement of the complex iron line region as well as the rest of the reflection component. The iron line is clearly broadened and is well-described by a relativistic blurring model, providing an opportunity to constrain the black hole spin. Although the spin constraint depends somewhat on which continuum model is used, we obtain a*>0.83 for all models that provide a good description of the spectrum. However, none of our spectral fits give a disk inclination that is consistent with the most recently reported binary values for Cyg X-1. This may indicate that there is a >13 degree misalignment between the orbital plane and the inner accretion disk (i.e., a warped accretion disk) or that there is missing physics in the spectral models.
Long-term X-ray variability of the black hole binary, Cygnus X-1, was studied with five years of MAXI data from 2009 to 2014, which include substantial periods of the high/soft state, as well as the low/hard state. In each state, Normalized Power Spe ctrum densities (NPSDs) were calculated in three energy bands of 2-4 keV, 4-10 keV and 10-20 keV. The NPSDs in a frequency from 1e-7 Hz to 1e-4 Hz are all approximated by a power-law function with an index -1.35 ~ -1.29. The fractional RMS variation ($eta$), calculated in the above frequency range, was found to show the following three properties; (1) $eta$ slightly decreases with energy in the low/hard state; (2) $eta$ increases towards higher energies in the high/soft state; and (3) in the 10-20 keV band, $eta$ is 3 times higher in the high/soft state than in the low/hard state. These properties were confirmed through studies of intensity-correlated changes of the MAXI spectra. Of these three findings, the first one is consistent with that seen in the short-term variability during the LHS. The latter two can be understood as a result of high variability of the hard-tail component seen in the high/soft state with the above very low frequency range, although the origin of the variability remains inconclusive.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا