ترغب بنشر مسار تعليمي؟ اضغط هنا

During normal Type I outbursts, the pulse profiles of Be/X-ray binary pulsars are found to be complex in soft X-ray energy ranges. The profiles in soft X-ray energy ranges are characterized by the presence of narrow absorption dips or dip-like featur es at several pulse phases. However, in hard X-ray energy ranges, the pulse profiles are rather smooth and single-peaked. Pulse phase-averaged spectroscopy of the these pulsars had been carried out during Type I outbursts. The broad-band spectrum of these pulsars were well described by partial covering high energy cutoff power-law model with interstellar absorption and Iron K_alpha emission line at 6.4 keV. Phase-resolved spectroscopy revealed that the presence of additional matter at certain pulse phases that partially obscured the emitted radiation giving rise to dips in the pulse profiles. The additional absorption is understood to be taking place by matter in the accretion streams that are phase locked with the neutron star. Optical/infrared observations of the companion Be star during these Type I outbursts showed that the increase in the X-ray intensity of the pulsar is coupled with the decrease in the optical/infrared flux of the companion star. There are also several changes in the IR/optical emission line profiles during these X-ray outbursts. The X-ray properties of these pulsars during Type I outbursts and corresponding changes in optical/infrared wavebands are discussed in this paper.
We present the results obtained from a study of the variability of iron emission lines in the high mass X-ray binary pulsar Cen X-3 during the eclipse, eclipse-egress and out-of-eclipse phases using XMM-Newton observations. Three iron emission lines at 6.4 keV, 6.7 keV, and 6.97 keV are clearly detected in the spectrum of the pulsar during the entire observations, irrespective of different binary phases. The properties of these emission lines are investigated at different intensity levels. The flux level and equivalent width of the emission lines change during the eclipse, eclipse-egress and out-of-eclipse orbital phases. Based on the results obtained from the time resolved spectral analysis, it is understood that the most probable emitting region of 6.4 keV fluorescent line is very close to the neutron star whereas the other two lines are produced in a region that is far from the neutron star, probably in the highly photo-ionized wind of the companion star or in the accretion disk corona.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا