ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigation of variability of iron emission lines in Centaurus X-3

302   0   0.0 ( 0 )
 نشر من قبل Sachindra Naik
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results obtained from a study of the variability of iron emission lines in the high mass X-ray binary pulsar Cen X-3 during the eclipse, eclipse-egress and out-of-eclipse phases using XMM-Newton observations. Three iron emission lines at 6.4 keV, 6.7 keV, and 6.97 keV are clearly detected in the spectrum of the pulsar during the entire observations, irrespective of different binary phases. The properties of these emission lines are investigated at different intensity levels. The flux level and equivalent width of the emission lines change during the eclipse, eclipse-egress and out-of-eclipse orbital phases. Based on the results obtained from the time resolved spectral analysis, it is understood that the most probable emitting region of 6.4 keV fluorescent line is very close to the neutron star whereas the other two lines are produced in a region that is far from the neutron star, probably in the highly photo-ionized wind of the companion star or in the accretion disk corona.



قيم البحث

اقرأ أيضاً

We address the problem where the X-ray emission lines are formed and investigate orbital dynamics using Chandra HETG observations, photoionizing calculations and numerical wind-particle simulations.The observed Si XIV (6.185 A) and S XVI (4.733 A) li ne profiles at four orbital phases were fitted with P Cygni-type profiles consisting of an emission and a blue-shifted absorption component. In the models, the emission originates in the photoionized wind of the WR companion illuminated by a hybrid source: the X-ray radiation of the compact star and the photospheric EUV-radiation from the WR star. The emission component exhibits maximum blue-shift at phase 0.5 (when the compact star is in front), while the velocity of the absorption component is constant (around -900 km/s). The simulated FeXXVI Ly alpha line (1.78 A) from the wind is weak compared to the observed one. We suggest that it originates in the vicinity of the compact star, with a maximum blue shift at phase 0.25 (compact star approaching). By combining the mass function derived with that from the infrared HeI absorption (arising from the WR companion), we constrain the masses and inclination of the system. Both a neutron star at large inclination (over 60 degrees) and a black hole at small inclination are possible solutions.
441 - M.Guainazzi 2012
We aim at constraining the geometry of the reprocessing matter in the nearby prototypical Seyfert 2 Galaxy Markarian 3 by studying the time evolution of spectral components associated to the primary AGN emission and to its Compton-scattering. We have analyzed archival spectroscopic observations of Markarian 3 taken over the last 12 years with the XMM-Newton, Suzaku and Swift observatories, as well as data taken during a monitoring campaign activated by us in 2012. The timescale of the Compton-reflection component variability (originally discovered by ASCA in the mid-90s) is ~64 days. This upper limit improves by more than a factor of 15 previous estimates of the Compton-reflection variability timescale for this source. When the light curve of the Compton-reflection continuum in the 4-5 keV band is correlated with the 15-150 keV Swift/BAT curve a delay ~1200 days is found. The cross-correlation results are dependent on the model used to fit the spectra, although the detection of the Compton-reflection component variability is independent of the range of models employed to fit the data. Reanalysis of an archival Chandra image of Markarian 3 indicates that the Compton-reflection and the Fe K-alpha emitting regions are extended to the North up to ~300 pc. The combination of these findings suggests that the optically-thick reprocessor in Markarian 3 is clumpy. There is mounting experimental evidence for the structure of the optically-thick gas and dust in the nuclear environment of nearby heavily obscured AGN to be extended and complex. We discuss possible modifications to the standard unification scenarios encompassing this complexity. Markarian 3, exhibiting X-ray absorption and reprocessing on widely different spatial scales, is an ideal laboratory to test these models (abridged).
CHIANTI contains a large quantity of atomic data for the analysis of astrophysical spectra. Programs are available in IDL and Python to perform calculation of the expected emergent spectrum from these sources. The database includes atomic energy leve ls, wavelengths, radiative transition probabilities, rate coefficients for collisional excitation, ionization, and recombination, as well as data to calculate free-free, free-bound, and two-photon continuum emission. In Version 9, we improve the modelling of the satellite lines at X-ray wavelengths by explicitly including autoionization and dielectronic recombination processes in the calculation of level populations for select members of the lithium isoelectronic sequence and Fe XVIII-XXIII. In addition, existing datasets are updated, new ions added and new total recombination rates for several Fe ions are included. All data and IDL programs are freely available at http://www.chiantidatabase.org or through SolarSoft and the Python code ChiantiPy is also freely available at https://github.com/chianti-atomic/ChiantiPy.
A single dish monitoring of millimeter maser lines SiS J=14-13 and HCN nu_2 = 1^f J=3-2 and several other rotational lines is reported for the archetypal carbon star IRC+10216. Relative line strength variations of 5%~30% are found for eight molecular line features with respect to selected reference lines. Definite line-shape variation is found in limited velocity intervals of the SiS and HCN line profiles. The asymmetrical line profiles of the two lines are mainly due to the varying components. Their dominant varying components of the line profiles have similar periods and phases as the IR light variation, although both quantities show some degree of velocity dependence; there is also variability asymmetry between the blue and red line wings of both lines. Combining the velocities and amplitudes with a wind velocity model, we suggest that the line profile variations are due to SiS and HCN masing lines emanating from the wind acceleration zone. The possible link of the variabilities to thermal, dynamical and/or chemical processes within or under this region is also discussed.
129 - Costanza Argiroffi 2019
Young stars show a variety of highly energetic phenomena, from accretion and outflow processes to hot coronal plasmas confined in their outer atmosphere, all regulated by the intense stellar magnetic fields. Many aspects on each of these phenomena ar e debated, but, most notably, their complex mutual interaction remains obscure. In this work I report how these phenomena are simultaneously responsible for the high-energy emission from young stars, with a special focus on the expected and observed variability in the X-ray band. Investigating variations in the X-ray emission from young stars allows us to pose constraints on flare and coronal plasma properties, coronal heating, accretion stream properties, and accretion geometries. All these results are important building blocks for constructing a comprehensive picture of the complex magnetosphere of young stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا