ترغب بنشر مسار تعليمي؟ اضغط هنا

136 - Sabine Harribey 2021
We compute the four-loop beta functions of short and long-range multi scalar models with general sextic interactions and complex fields. We then specialize the beta functions to a $U(N)^3$ symmetry and study the renormalization group at next-to-leadi ng order in $N$ and small $epsilon$. In the short-range case, $epsilon$ is the deviation from the critical dimension while it is the deviation from the critical scaling of the free propagator in the long-range case. This allows us to find the $1/N$ corrections to the rank-3 sextic tensor model of arXiv:1912.06641. In the short-range case, we still find a non-trivial real IR stable fixed point, with a diagonalizable stability matrix. All couplings, except for the so-called wheel coupling, have terms of order $epsilon^0$ at leading and next-to-leading order, which makes this fixed point different from the other melonic fixed points found in quartic models. In the long-range case, the corrections to the fixed point are instead not perturbative in $epsilon$ and hence unreliable; we thus find no precursor of the large-$N$ fixed point.
We demonstrate that random tensors transforming under rank-$5$ irreducible representations of $mathrm{O}(N)$ can support melonic large $N$ expansions. Our construction is based on models with sextic ($5$-simplex) interaction, which generalize previou sly studied rank-$3$ models with quartic (tetrahedral) interaction (arXiv:1712.00249 and arXiv:1803.02496). Beyond the irreducible character of the representations, our proof relies on recursive bounds derived from a detailed combinatorial analysis of the Feynman graphs. Our results provide further evidence that the melonic limit is a universal feature of irreducible tensor models in arbitrary rank.
We consider a multi-scalar field theory with either short-range or long-range free action and with quartic interactions that are invariant under $O(N_1)times O(N_2) times O(N_3)$ transformations, of which the scalar fields form a tri-fundamental repr esentation. We study the renormalization group fixed points at two loops at finite $N$ and in various large-$N$ scaling limits for small $epsilon$, the latter being either the deviation from the critical dimension or from the critical scaling of the free propagator. In particular, for the homogeneous case $N_i = N$ for $i=1,2,3$, we study the subleading corrections to previously known fixed points. In the short-range model, for $epsilon N^2gg 1$, we find complex fixed points with non-zero tetrahedral coupling, that at leading order reproduce the results of arXiv:1707.03866 ; the main novelty at next-to-leading order is that the critical exponents acquire a real part, thus allowing a correct identification of some fixed points as IR stable. In the long-range model, for $epsilon N ll 1 $, we find again complex fixed points with non-zero tetrahedral coupling, that at leading order reproduce the line of stable fixed points of arXiv:1903.03578; at next-to-leading order, this is reduced to a discrete set of stable fixed points. One difference between the short-range and long-range cases is that, in the former the critical exponents are purely imaginary at leading-order and gain a real part at next-to-leading order, while for the latter the situation is reversed.
We compute the three-loop beta functions of long-range multi-scalar models with general quartic interactions. The long-range nature of the models is encoded in a kinetic term with a Laplacian to the power $0<zeta<1$, rendering the computation of Feyn man diagrams much harder than in the usual short-range case ($zeta=1$). As a consequence, previous results stopped at two loops, while six-loop results are available for short-range models. We push the renormalization group analysis to three loops, in an $epsilon=4zeta-d$ expansion at fixed dimension $d<4$, extensively using the Mellin-Barnes representation of Feynman amplitudes in the Schwinger parametrization. We then specialize the beta functions to various models with different symmetry groups: $O(N)$, $(mathbb{Z}_2)^N rtimes S_N$, and $O(N)times O(M)$. For such models, we compute the fixed points and critical exponents.
We compute the OPE coefficients of the bosonic tensor model of cite{Benedetti:2019eyl} for three point functions with two fields and a bilinear with zero and non-zero spin. We find that all the OPE coefficients are real in the case of an imaginary te trahedral coupling constant, while one of them is not real in the case of a real coupling. We also discuss the operator spectrum of the free theory based on the character decomposition of the partition function.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا