ﻻ يوجد ملخص باللغة العربية
We compute the four-loop beta functions of short and long-range multi scalar models with general sextic interactions and complex fields. We then specialize the beta functions to a $U(N)^3$ symmetry and study the renormalization group at next-to-leading order in $N$ and small $epsilon$. In the short-range case, $epsilon$ is the deviation from the critical dimension while it is the deviation from the critical scaling of the free propagator in the long-range case. This allows us to find the $1/N$ corrections to the rank-3 sextic tensor model of arXiv:1912.06641. In the short-range case, we still find a non-trivial real IR stable fixed point, with a diagonalizable stability matrix. All couplings, except for the so-called wheel coupling, have terms of order $epsilon^0$ at leading and next-to-leading order, which makes this fixed point different from the other melonic fixed points found in quartic models. In the long-range case, the corrections to the fixed point are instead not perturbative in $epsilon$ and hence unreliable; we thus find no precursor of the large-$N$ fixed point.
We develop further an approach to computing energy-energy correlations (EEC) directly from finite correlation functions. In this way, one completely avoids infrared divergences. In maximally supersymmetric Yang-Mills theory ($mathcal{N}=4$ sYM), we d
We determine an approximate expression for the O(alpha_s^3) contribution chi_2 to the kernel of the BFKL equation, which includes all collinear and anticollinear singular contributions. This is derived using recent results on the relation between the
Deep inelastic scattering (DIS) total cross section data at small-x as measured by the HERA experiments is well described by Balitsky-Kovchegov (BK) evolution in the leading order dipole picture. Recently the full Next-to-Leading Order (NLO) dipole p
We present a first analysis of parton-to-pion fragmentation functions at next-to-next-to-leading order accuracy in QCD based on single-inclusive pion production in electron-positron annihilation. Special emphasis is put on the technical details neces
Jets constructed via clustering algorithms (e.g., anti-$k_T$, soft-drop) have been proposed for many precision measurements, such as the strong coupling $alpha_s$ and the nucleon intrinsic dynamics. However, the theoretical accuracy is affected by mi