ترغب بنشر مسار تعليمي؟ اضغط هنا

Usual paradigm in the theory of electron transport is related to the fact that the dielectric permittivity of the insulator is assumed to be constant, no time dispersion. We take into account the slow polarization dynamics of the dielectric layers in the tunnel barriers in the fluctuating electric fields induced by single-electron tunneling events and study transport in the single electron transistor (SET). Here slow dielectric implies slow compared to the characteristic time scales of the SET charging-discharging effects. We show that for strong enough polarizability, such that the induced charge on the island is comparable with the elementary charge, the transport properties of the SET substantially deviate from the known results of transport theory of SET. In particular, the coulomb blockade is more pronounced at finite temperature, the conductance peaks change their shape and the current-voltage characteristics show the memory-effect (hysteresis). However, in contrast to SETs with ferroelectric tunnel junctions, here the periodicity of the conductance in the gate voltage is not broken, instead the period strongly depends on the polarizability of the gate-dielectric. We uncover the fine structure of the hysteresis-effect where the large hysteresis loop may include a number of smaller loops. Also we predict the memory effect in the current-voltage characteristics $I(V)$, with $I(V) eq -I(-V)$.
The fundamental property of most single-electron devices with quasicontinuous quasiparticle spectrum on the island is the periodicity of their transport characteristics in the gate voltage. This property is robust even with respect to placing the fer roelectric insulators in the source and drain tunnel junctions. We show that placing the ferroelectric inside the gate capacitance breaks this periodicity. The current-voltage characteristics of this SET strongly depends on the ferroelectric polarization and shows the giant memory-effect even for negligible ferroelectric hysteresis making this device promising for memory applications.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا