ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the manipulation of the photoelectron spin-polarization in Bi$_2$Se$_3$ by spin- and angle-resolved photoemission spectroscopy. General rules are established that enable controlling the spin-polarization of photoemitted electrons via light p olarization, sample orientation, and photon energy. We demonstrate the $pm$100% reversal of a single component of the measured spin-polarization vector upon the rotation of light polarization, as well as a full three-dimensional manipulation by varying experimental configuration and photon energy. While a material-specific density-functional theory analysis is needed for the quantitative description, a minimal two-atomic-layer model qualitatively accounts for the spin response based on the interplay of optical selection rules, photoelectron interference, and topological surface-state complex structure. It follows that photoelectron spin-polarization control is generically achievable in systems with a layer-dependent, entangled spin-orbital texture.
We present an analysis of two experimental approaches to controlling the directionality of molecular rotation with ultrashort laser pulses. The two methods are based on the molecular interaction with either a pair of pulses (a double kick scheme) or a longer pulse sequence (a chiral pulse train scheme). In both cases, rotational control is achieved by varying the polarization of and the time delay between the consecutive laser pulses. Using the technique of polarization sensitive resonance-enhanced multi-photon ionization, we show that both methods produce significant rotational directionality. We demonstrate that increasing the number of excitation pulses supplements the ability to control the sense of molecular rotation with quantum state selectivity, i.e. predominant excitation of a single rotational state. We also demonstrate the ability of both techniques to generate counter-rotation of molecular nuclear spin isomers (here, ortho- and para-nitrogen) and molecular isotopologues (here, 14N_2 and 15N_2).
We investigate experimentally the effect of quantum resonance in the rotational excitation of the simplest quantum rotor - a diatomic molecule. By using the techniques of high-resolution femtosecond pulse shaping and rotational state-resolved detecti on, we measure directly the amount of energy absorbed by molecules interacting with a periodic train of laser pulses, and study its dependence on the train period. We show that the energy transfer is significantly enhanced at quantum resonance, and use this effect for demonstrating selective rotational excitation of two nitrogen isotopologues, $ ^{14}N_2$ and $ ^{15}N_2$. Moreover, by tuning the period of the pulse train in the vicinity of a fractional quantum resonance, we achieve spin-selective rotational excitation of para- and ortho-isomers of $ ^{15}N_2$.
Trains of ultrashort laser pulses separated by the time of rotational revival (typically, tens of picoseconds) have been exploited for creating ensembles of aligned molecules. In this work we introduce a chiral pulse train - a sequence of linearly po larized pulses with the polarization direction rotating from pulse to pulse by a controllable angle. The chirality of such a train, expressed through the period and direction of its polarization rotation, is used as a new control parameter for achieving selectivity and directionality of laser-induced rotational excitation. The method employs chiral trains with a large number of pulses separated on the time scale much shorter than the rotational revival (a few hundred femtosecond), enabling the use of conventional pulse shapers.
We propose and demonstrate the method of population transfer by piecewise adiabatic passage between two quantum states. Coherent excitation of a two-level system with a train of ultrashort laser pulses is shown to reproduce the effect of an adiabatic passage, conventionally achieved with a single frequency-chirped pulse. By properly adjusting the amplitudes and phases of the pulses in the excitation pulse train, we achieve complete and robust population transfer to the target state. The effect is demonstrated experimentally by observing piecewise excitation of Rubidium atoms from 5s_1/2 to 5p_1/2 electronic state. We show that similarly to the conventional adiabatic passage, the piecewise process is insensitive to the total excitation energy as long as the adiabaticity conditions are satisfied. The piecewise nature of the process suggests that robust and selective population transfer could be implemented in a variety of complex quantum systems beyond the two-level approximation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا