ترغب بنشر مسار تعليمي؟ اضغط هنا

Population transfer between two quantum states by piecewise chirping of femtosecond pulses: Theory and experiment

55   0   0.0 ( 0 )
 نشر من قبل Valery Milner
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose and demonstrate the method of population transfer by piecewise adiabatic passage between two quantum states. Coherent excitation of a two-level system with a train of ultrashort laser pulses is shown to reproduce the effect of an adiabatic passage, conventionally achieved with a single frequency-chirped pulse. By properly adjusting the amplitudes and phases of the pulses in the excitation pulse train, we achieve complete and robust population transfer to the target state. The effect is demonstrated experimentally by observing piecewise excitation of Rubidium atoms from 5s_1/2 to 5p_1/2 electronic state. We show that similarly to the conventional adiabatic passage, the piecewise process is insensitive to the total excitation energy as long as the adiabaticity conditions are satisfied. The piecewise nature of the process suggests that robust and selective population transfer could be implemented in a variety of complex quantum systems beyond the two-level approximation.


قيم البحث

اقرأ أيضاً

Triple-differential cross sections for two-photon double ionization of molecular hydrogen are presented for a central photon energy of 30 eV. The calculations are based on a fully {it ab initio}, nonperturbative, approach to the time-dependent Schroe dinger equation in prolate spheroidal coordinates, discretized by a finite-element discrete-variable-representation. The wave function is propagated in time for a few femtoseconds using the short, iterative Lanczos method to study the correlated response of the two photoelectrons to short, intense laser radiation. The current results often lie in between those of Colgan {it et al} [J. Phys. B {bf 41} (2008) 121002] and Morales {it et al} [J. Phys. B {bf 41} (2009) 134013]. However, we argue that these individual predictions should not be compared directly to each other, but preferably to experimental data generated under well-defined conditions.
We investigate the dynamics of molecular photoexcitation by unchirped femtosecond laser pulses using RbCs as a model system. This study is motivated by a goal of optimizing a two-color scheme of transferring vibrationally-excited ultracold molecules to their absolute ground state. In this scheme the molecules are initially produced by photoassociation or magnetoassociation in bound vibrational levels close to the first dissociation threshold. We analyze here the first step of the two-color path as a function of pulse intensity from the low-field to the high-field regime. We use two different approaches, a global one, the Wavepacket method, and a restricted one, the Level by Level method where the number of vibrational levels is limited to a small subset. The comparison between the results of the two approaches allows one to gain qualitative insights into the complex dynamics of the high-field regime. In particular, we emphasize the non-trivial and important role of far-from-resonance levels which are adiabatically excited through vertical transitions with a large Franck-Condon factor. We also point out spectacular excitation blockade due to the presence of a quasi-degenerate level in the lower electronic state. We conclude that selective transfer with femtosecond pulses is possible in the low-field regime only. Finally, we extend our single-pulse analysis and examine population transfer induced by coherent trains of low-intensity femtosecond pulses.
We analyze the photoelectron angular distribution in two-pathway interference between non-resonant one-photon and resonant two-photon ionization of neon. We consider a bichromatic femtosecond XUV pulse whose fundamental frequency is tuned near the $2 p^5 3s$ atomic states of neon. The time-dependent Schrodinger equation is solved and the results are employed to compute the angular distribution and the associated anisotropy parameters at the main photoelectron line. We also employ a time-dependent perturbative approach, which allows obtaining information on the process for a large range of pulse parameters, including the steady-state case of continuous radiation, i.e., an infinitely long pulse. The results from the two methods are in relatively good agreement over the domain of applicability of perturbation theory.
Spontaneous emission from individual atoms in vapor lasts nanoseconds, if not microseconds, and beatings in this emission involve only directly excited energy sublevels. In contrast, the superfluorescent emissions burst on a much-reduced timescale an d their beatings involve both directly and indirectly excited energy sublevels. In this work, picosecond and femtosecond superfluorescent beatings are observed from a dense cesium atomic vapor. Cesium atoms are excited by 60-femtosecond long, 800 nm laser pulses via two-photon processes into their coherent superpositions of the ground 6S and excited 8S states. As a part of the transient four wave mixing process, the yoked superfluorescent blue light at lower transitions of 6S - 7P are recorded and studied. Delayed buildup time of this blue light is measured as a function of the input laser beam power using a high-resolution 2 ps streak camera. The power dependent buildup delay time is consistently doubled as the vapor temperature is lowered to cut the number of atoms by half. At low power and density, a beating with a period of 100 picoseconds representing the ground state splitting is observed. The autocorrelation measurements of the generated blue light exhibit a beating with a quasi-period of 230 fs corresponding to the splitting of the 7P level primarily at lower input laser power. Understanding and, eventually, controlling the intriguing nature of superfluorescent beatings may permit a rapid quantum operation free from the rather slow spontaneous emission processes from atoms and molecules.
Multiphoton ionization of sodium by femtosecond laser pulses of 800 nm wavelength in the range of laser peak intensities entering over-the-barrier ionization domain is studied. Photoelectron momentum distributions and the energy spectra are determine d numerically by solving the time dependent Schroedinger equation for three values of the laser intensity from this domain. The calculated spectra agree well with the spectra obtained experimentally by Hart et al (Phys. Rev. A 2016 93 063426). A partial wave analysis of the spectral peaks related to Freeman resonances has shown that each peak is a superposition of the contributions of photoelectrons produced by the resonantly enhanced multiphoton ionization via different intermediate states. It is demonstrated that at specific laser intensities the selective ionization, which occurs predominantly through a single intermediate state, is possible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا