ترغب بنشر مسار تعليمي؟ اضغط هنا

394 - J. W. Sulentic 2012
We test the recent claim by Hu et al. (2008) that FeII emission in Type 1 AGN shows a systematic redshift relative to the local source rest frame and broad-line Hbeta. We compile high s/n median composites using SDSS spectra from both the Hu et al. s ample and our own sample of the 469 brightest DR5 spectra. Our composites are generated in bins of FWHM Hbeta and FeII strength as defined in our 4D Eigenvector 1 (4DE1) formalism. We find no evidence for a systematic FeII redshift and consistency with previous assumptions that FeII shift and width (FWHM) follow Hbeta shift and FWHM in virtually all sources. This result is consistent with the hypothesis that FeII emission (quasi-ubiquitous in type 1 sources) arises from a broad-line region with geometry and kinematics the same as that producing the Balmer lines.
53 - S. Zamfir 2009
We explore the properties of the H_beta emission line profile in a large, homogeneous and bright sample of N~470 low redshift quasars extracted from Sloan Digital Sky Survey (DR5). We approach the investigation from two complementary directions: comp osite/median spectra and a set of line diagnostic measures (asymmetry index, centroid shift and kurtosis) in individual quasars. The project is developed and presented in the framework of the so-called 4D Eigenvector 1 (4DE1) Parameter Space, with a focus on its optical dimensions, FWHM(H_beta) and the relative strength of optical FeII (R_FeII=W(FeII4434-4684)/W(H_beta)). We reenforce the conclusion that not all quasars are alike and spectroscopically they do not distribute randomly about an average typical optical spectrum. Our results give further support to the concept of two populations A and B (narrower and broader than 4000 km/s FWHM(H_beta), respectively) that emerged in the context of 4DE1 space. The broad H_beta profiles in composite spectra of Population A sources are best described by a Lorentzian and in Population B by a double Gaussian model. Moreover, high and low accretion sources (an alternative view of the Population A/B concept) not only show significant differences in terms of Black Hole (BH) mass and Eddington ratio L_bol/L_Edd, but they also show distinct properties in terms of line asymmetry, shift and shapes. We finally suggest that a potential refinement of the 4DE1 space can be provided by separating two populations of quasars at R_FeII~0.50 rather than at FWHM(H_beta)=4000 km/s. Concomitantly, the asymmetry and centroid shift profile measures at 1/4 fractional intensity can be reasonable surrogates for the FWHM(H_beta) dimension of the current 4DE1.
We describe a 4D Eigenvector 1 (4DE1) space that serves as a surrogate H-R diagram for quasars. It provides a context for describing and unifying differences between all broad line AGN. Quasar spectra can be averaged in a non-random way using 4DE1 ju st as stellar spectra can be averaged non-randomly within the OBAFGKM classification sequence. We find that quasars with FWHM H_beta less than (Population A) and greater than (Population B) 4000 km/s show many significant differences that may point to an actual dichotomy. Broad line profile measures and fits reenforce the idea of a dichotomy because they are fundamentally different: Pop.A - Lorentzian-like and Pop.B - double Gaussian. The differences have implications both for BH mass estimation and for inferences about source structure and kinematics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا