ترغب بنشر مسار تعليمي؟ اضغط هنا

The presence of macroscopic phase separation between the superconducting and magnetic phases in cfcaf is demonstrated by muon spin rotation (muSR) measurements conducted across their phase boundaries (x=0.05-0.15). The magnetic phase tends to retain the high transition temperature (T_m > T_c), while Co-doping induces strong randomness. The volumetric fraction of superconducting phase is nearly proportional to the Co content $x$ with constant superfluid density. These observations suggest the formation of superconducting islands (or domains) associated with Co ions in the Fe$_2$As$_2$ layers, indicating a very short coherence length.
Superfluid density ($n_s$) in the mixed state of an iron pnictide superconductor Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ is determined by muon spin rotation for a sample with optimal doping ($x=0.4$). The temperature dependence of $n_s$ is perfectly reproduc ed by the conventional BCS model for s-wave paring, where the order parameter can be either a single-gap with $Delta=8.35(6)$ meV [$2Delta/k_BT_c=5.09(4)$], or double-gap structure with $Delta_1=12$ meV (fixed) [$2Delta_1/k_BT_c=7.3$] and $Delta_2=6.8(3)$ meV [$2Delta_2/k_BT_c=4.1(2)$]. The latter is consistent with the recent result of angle-resolved photo-emssion spectroscopy. The large gap parameters ($2Delta/k_BT_c$) indicate extremely strong coupling of carriers to bosons that mediate the Cooper pairing.
Recent discovery of oxypnictide superconductor LaFeAs(O,F) (LFAO-F) with the critical temperature (Tc) of 26 K and succeeding revelation of much increased Tc upon substitution of La for other rare earth elements (such as Sm, leading to ~43 K) and app lication of pressure for LFAO-F (~ 43 K) has triggered broad interest in the mechanism yielding relatively high Tc in this new class of compounds. While they share a feature with high-Tc cuprates that superconductivity occurs upon carrier doping to pristine compound which exhibits magnetism, they also resemble the heavy-fermion compounds in the sense that superconductivity appears in the vicinity of magnetic phase. Investigation of electronic states near the boundary between these two phases might provide some useful information on the mechanism of superconductivity, as it has been proved to be the case in many exotic superconductors. Here we show by muon experiment in the LFAO-F compound that a macroscopic phase separation into superconducting and spin glass-like magnetic phases occurs at x=0.06 that is near the phase boundary, where both the magnetism and superconductivity develop simultaneously below a common Tc ~ 18 K. This accordance strongly suggests intimate relationship between magnetism and superconductivity typically found in heavy-fermion systems near the quantum critical point.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا