ترغب بنشر مسار تعليمي؟ اضغط هنا

We report new p$(vec{e},e^prime p)pi^circ$ measurements in the $Delta^{+}(1232)$ resonance at the low momentum transfer region utilizing the magnetic spectrometers of the A1 Collaboration at MAMI. The mesonic cloud dynamics are predicted to be domina nt and appreciably changing in this region while the momentum transfer is sufficiently low to be able to test chiral effective calculations. The results disagree with predictions of constituent quark models and are in reasonable agreement with dynamical calculations with pion cloud effects, chiral effective field theory and lattice calculations. The reported measurements suggest that improvement is required to the theoretical calculations and provide valuable input that will allow their refinements.
87 - S. Stave , et al 2008
The determination of non-spherical angular momentum amplitudes in nucleons at long ranges (low Q^{2}), was accomplished through the $p(vec{e},ep)pi^0$ reaction in the Delta region at $Q^2=0.060$, 0.127, and 0.200 (GeV/c)^2 at the Mainz Microtron (MAM I) with an accuracy of 3%. The results for the dominant transition magnetic dipole amplitude and the quadrupole to dipole ratios have been obtained with an estimated model uncertainty which is approximately the same as the experimental uncertainty. Lattice and effective field theory predictions agree with our data within the relatively large estimated theoretical uncertainties. Phenomenological models are in good agreement with experiment when the resonant amplitudes are adjusted to the data. To check reaction model calculations additional data were taken for center of mass energies below resonance and for the $sigma_{TL}$ structure function. These results confirm the dominance, and general Q^2 variation, of the pionic contribution at large distances.
44 - A.M.Bernstein , S. Stave 2007
There is an important connection between the low energy theorems of QCD and the energy dependence of the Delta resonance in pi-N scattering, as well as the closely related gamma^{*} N -> pi N reaction. The resonance shape is due not only to the stron g pi-N interaction in the p wave but the small interaction in the s wave; the latter is due to spontaneous chiral symmetry breaking in QCD (i.e. the Nambu-Goldstone nature of the pion). A brief overview of experimental tests of chiral perturbation theory and chiral based models is presented
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا