ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate possible interpretations of the new periodic B- and A-type variable stars discovered in NGC 3766. They lie in the region of the Hertzsprung-Russell diagram between slowly pulsating B and delta Sct stars, a region where no pulsation is predicted by standard models of pulsating stars. We show that the two other possible causes of periodic light curve variations, rotational modulation and binarity, cannot provide a satisfactory explanation for all the properties observed in those stars either. The question of their origin is thus currently an open issue.
88 - S. Saesen , M. Briquet , C. Aerts 2013
Recent progress in the seismic interpretation of field beta Cep stars has resulted in improvements of the physics in the stellar structure and evolution models of massive stars. Further asteroseismic constraints can be obtained from studying ensemble s of stars in a young open cluster, which all have similar age, distance and chemical composition. We present an observational asteroseismology study based on the discovery of numerous multi-periodic and mono-periodic B-stars in the open cluster NGC 884. We describe a thorough investigation of the pulsational properties of all B-type stars in the cluster. Overall, our detailed frequency analysis resulted in 115 detected frequencies in 65 stars. We found 36 mono-periodic, 16 bi-periodic, 10 tri-periodic, and 2 quadru-periodic stars and one star with 9 independent frequencies. We also derived the amplitudes and phases of all detected frequencies in the U, B, V and I filter, if available. We achieved unambiguous identifications of the mode degree for twelve of the detected frequencies in nine of the pulsators. Imposing the identified degrees and measured frequencies of the radial, dipole and quadrupole modes of five pulsators led to a seismic cluster age estimate of log(age/yr) =7.12-7.28 from a comparison with stellar models. Our study is a proof-of-concept for and illustrates the current status of ensemble asteroseismology of a young open cluster.
CONTEXT: Recent progress in the seismic interpretation of field beta Cep stars has resulted in improvements of the physics in the stellar structure and evolution models of massive stars. Further asteroseismic constraints can be obtained from studying ensembles of stars in a young open cluster, which all have similar age, distance and chemical composition. AIMS: To improve our comprehension of the beta Cep stars, we studied the young open cluster NGC 884 to discover new B-type pulsators, besides the two known beta Cep stars, and other variable stars. METHODS: An extensive multi-site campaign was set up to gather accurate CCD photometry time series in four filters (U, B, V, I) of a field of NGC884. Fifteen different instruments collected almost 77500 CCD images in 1286 hours. The images were calibrated and reduced to transform the CCD frames into interpretable differential light curves. Various variability indicators and frequency analyses were applied to detect variable stars in the field. Absolute photometry was taken to deduce some general cluster and stellar properties. RESULTS: We achieved an accuracy for the brightest stars of 5.7 mmag in V, 6.9 mmag in B, 5.0 mmag in I and 5.3 mmag in U. The noise level in the amplitude spectra is 50 micromag in the V band. Our campaign confirms the previously known pulsators, and we report more than one hundred new multi- and mono-periodic B-, A- and F-type stars. Their interpretation in terms of classical instability domains is not straightforward, pointing to imperfections in theoretical instability computations. In addition, we have discovered six new eclipsing binaries and four candidates as well as other irregular variable stars in the observed field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا