ﻻ يوجد ملخص باللغة العربية
We investigate possible interpretations of the new periodic B- and A-type variable stars discovered in NGC 3766. They lie in the region of the Hertzsprung-Russell diagram between slowly pulsating B and delta Sct stars, a region where no pulsation is predicted by standard models of pulsating stars. We show that the two other possible causes of periodic light curve variations, rotational modulation and binarity, cannot provide a satisfactory explanation for all the properties observed in those stars either. The question of their origin is thus currently an open issue.
We summarize the properties of the new periodic, small amplitude, variable stars recently discovered in the open cluster NGC 3766. They are located in the region of the Hertzsprung-Russell diagram between delta Sct and slowly pulsating B stars, a reg
The recent variability survey of the NGC 3766 cluster revealed a considerable number of periodic variable stars in a region of the H-R diagram where no pulsation is expected. This region lies between the instability strips of the delta Scuti and SPB
A recent photometric survey in the NGC~3766 cluster led to the detection of stars presenting an unexpected variability. They lie in a region of the Hertzsprung-Russell (HR) diagram where no pulsation are theoretically expected, in between the $delta$
Weak magnetic fields have recently been detected in a number of A-type stars, including Vega and Sirius. At the same time, space photometry observations of A- and late B-type stars from Kepler and TESS have highlighted the existence of rotational mod
We report the discovery of 3 new Double Periodic Variables based on the analysis of ASAS-SN light curves: GSD J11630570-510306, V593 Sco and TYC 6939-678-1. These systems have orbital periods between 10 and 20 days and long cycles between 300 and 600 days.