ترغب بنشر مسار تعليمي؟ اضغط هنا

Polariton condensates are investigated in periodical potentials created by surface acoustic waves using both resonant and non-resonant optical excitation. Under resonant pumping condensates are formed due to polariton parametric scattering from the p ump. In this case the single particle dispersion in the presence of the condensate shows a strong reduction of the energy gap arising from the acoustic modulation, indicating efficient screening of the surface acoustic wave potential by spatial modulation of the polariton density. The observed results are in good agreement with a model based on generalised Gross-Pitaveskii equations with account taken of the spatial dependence of the exciton energy landscape. In the case of incoherent, non-resonant pumping coexisting non-equilibrium condensates with s- and p- type wavefunctions are observed, which have different energies, symmetry and spatial coherence. The energy splitting between these condensate states is also reduced with respect to the gap of the one particle spectrum below threshold, but the screening effect is less pronounced than in the case of resonantly pumped system due to weaker modulation of the pump state.
The polarization dependence of nonequilibrium transitions in a multistable cavity-polariton system is studied under a nanosecond long resonant optical excitation at the normal and magic angle incidences with various polarizations of the pump beam. Th e temporal correlations between the frequency, intensity, and optical polarization of the intra-cavity field, which all undergo sharp threshold-like changes due to the spin dependent interaction of cavity polaritons, are visualized. The observed dynamics cannot be reproduced within the conventional semi-classical model based on the Gross-Pitaevskii equations. To explain the observed phenomena, it is necessary to take into account the unpolarized exciton reservoir which brings on additional blueshift of bright excitons, equal in the $sigma^+$ and $sigma^-$ polarization components. This model explains the effect of polarization instability under both pulsed and continuous wave resonant excitation conditions, consistently with the spin ring pattern formation that has recently been observed under Gaussian shaped excitation.
The transmission of a pump laser resonant with the lower polariton branch of a semiconductor microcavity is shown to be highly dependent on the degree of circular polarization of the pump. Spin dependent anisotropy of polariton-polariton interactions allows the internal polarization to be controlled by varying the pump power. The formation of spatial patterns, spin rings with high degree of circular polarization, arising as a result of polarization bistability, is observed. A phenomenological model based on spin dependent Gross-Pitaevskii equations provides a good description of the experimental results. Inclusion of interactions with the incoherent exciton reservoir, which provides spin-independent blueshifts of the polariton modes, is found to be essential.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا