ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper reports experimental results on self-organizing wireless networks carried by small flying robots. Flying ad hoc networks (FANETs) composed of small unmanned aerial vehicles (UAVs) are flexible, inexpensive and fast to deploy. This makes th em a very attractive technology for many civilian and military applications. Due to the high mobility of the nodes, maintaining a communication link between the UAVs is a challenging task. The topology of these networks is more dynamic than that of typical mobile ad hoc networks (MANETs) and of typical vehicle ad hoc networks (VANETs). As a consequence, the existing routing protocols designed for MANETs partly fail in tracking network topology changes. In this work, we compare two different routing algorithms for ad hoc networks: optimized link-state routing (OLSR), and predictive-OLSR (P-OLSR). The latter is an OLSR extension that we designed for FANETs; it takes advantage of the GPS information available on board. To the best of our knowledge, P-OLSR is currently the only FANET-specific routing technique that has an available Linux implementation. We present results obtained by both Media Access Control (MAC) layer emulations and real-world experiments. In the experiments, we used a testbed composed of two autonomous fixed-wing UAVs and a node on the ground. Our experiments evaluate the link performance and the communication range, as well as the routing performance. Our emulation and experimental results show that P-OLSR significantly outperforms OLSR in routing in the presence of frequent network topology changes.
The hyperspherical harmonic (HH) method has been widely applied in recent times to the study of the bound states, using the Rayleigh-Ritz variational principle, and of low-energy scattering processes, using the Kohn variational principle, of A=3 and 4 nuclear systems. When the wave function of the system is expanded over a sufficiently large set of HH basis functions, containing or not correlation factors, quite accurate results can be obtained for the observables of interest. In this paper, the main aspects of the method are discussed together with its application to the A=3 and 4 nuclear bound and zero-energy scattering states. Results for a variety of nucleon-nucleon (NN) and three-nucleon (3N) local or non-local interactions are reported. In particular, NN and 3N interactions derived in the framework of the chiral effective field theory and NN potentials from which the high momentum components have been removed, as recently presented in the literature, are considered for the first time within the context of the HH method. The purpose of this paper is two-fold. First, to present a complete description of the HH method for bound and scattering states, including also detailed formulas for the computation of the matrix elements of the NN and 3N interactions. Second, to report accurate results for bound and zero-energy scattering states obtained with the most commonly used interaction models. These results can be useful for comparison with those obtained by other techniques and are a significant test for different future approaches to such problems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا