ترغب بنشر مسار تعليمي؟ اضغط هنا

71 - S. Rodriguez 2009
Simulations of Titans atmospheric transmission and surface reflectivity have been developed in order to estimate how Titans atmosphere and surface properties could affect performances of the Cassini radar experiment. In this paper we present a select ion of models for Titans haze, vertical rain distribution, and surface composition implemented in our simulations. We collected dielectric constant values for the Cassini radar wavelength ($sim 2.2$ cm) for materials of interest for Titan: liquid methane, liquid mixture of methane-ethane, water ice and light hydrocarbon ices. Due to the lack of permittivity values for Titans haze particles in the microwave range, we performed dielectric constant ($varepsilon_r$) measurements around 2.2 cm on tholins synthesized in laboratory. We obtained a real part of $varepsilon_r$ in the range of 2-2.5 and a loss tangent between $10^{-3}$ and $5.10^{-2}$. By combining aerosol distribution models (with hypothetical condensation at low altitudes) to surface models, we find the following results: (1) Aerosol-only atmospheres should cause no loss and are essentially transparent for Cassini radar, as expected by former analysis. (2) However, if clouds are present, some atmospheric models generate significant attenuation that can reach $-50 dB$, well below the sensitivity threshold of the receiver. In such cases, a $13.78 GHz$ radar would not be able to measure echoes coming from the surface. We thus warn about possible risks of misinterpretation if a textquotedblleft wet atmospheretextquotedblright $ $is not taken into account. (3) Rough surface scattering leads to a typical response of $sim -17 dB$. These results will have important implications on future Cassini radar data analysis.
97 - S. Rodriguez 2009
Titan is one of the primary scientific objectives of the NASA ESA ASI Cassini Huygens mission. Scattering by haze particles in Titans atmosphere and numerous methane absorptions dramatically veil Titans surface in the visible range, though it can be studied more easily in some narrow infrared windows. The Visual and Infrared Mapping Spectrometer (VIMS) instrument onboard the Cassini spacecraft successfully imaged its surface in the atmospheric windows, taking hyperspectral images in the range 0.4 5.2 ?m. On 26 October (TA flyby) and 13 December 2004 (TB flyby), the Cassini Huygens mission flew over Titan at an altitude lower than 1200 km at closest approach. We report here on the analysis of VIMS images of the Huygens landing site acquired at TA and TB, with a spatial resolution ranging from 16 to14.4 km/pixel. The pure atmospheric backscattering component is corrected by using both an empirical method and a first-order theoretical model. Both approaches provide consistent results. After the removal of scattering, ratio images reveal subtle surface heterogeneities. A particularly contrasted structure appears in ratio images involving the 1.59 and 2.03 ?m images north of the Huygens landing site. Although pure water ice cannot be the only component exposed at Titans surface, this area is consistent with a local enrichment in exposed water ice and seems to be consistent with DISR/Huygens images and spectra interpretations. The images show also a morphological structure that can be interpreted as a 150 km diameter impact crater with a central peak.
On the basis of the three fundamental principles of (i) Poincar{e} symmetry of space time, (ii) electromagnetic gauge symmetry, and (iii) unitarity, we construct an universal Lagrangian for the electromagnetic interactions of elementary vector partic les, i.e., massive spin-1 particles transforming in the /1/2,1/2) representation space of the Homogeneous Lorentz Group (HLG). We make the point that the first two symmetries alone do not fix the electromagnetic couplings uniquely but solely prescribe a general Lagrangian depending on two free parameters, here denoted by xi and g. The first one defines the electric-dipole and the magnetic-quadrupole moments of the vector particle, while the second determines its magnetic-dipole and electric-quadrupole moments. In order to fix the parameters one needs an additional physical input suited for the implementation of the third principle. As such, one chooses Compton scattering off a vector target and requires the cross section to respect the unitarity bounds in the high energy limit. In result, we obtain the universal g=2, and xi=0 values which completely characterize the electromagnetic couplings of the considered elementary vector field at tree level. The nature of this vector particle, Abelian versus non-Abelian, does not affect this structure. Merely, a partition of the g=2 value into non-Abelian, g_{na}, and Abelian, g_{a}=2-g_{na}, contributions occurs for non-Abelian fields with the size of g_{na} being determined by the specific non-Abelian group appearing in the theory of interest, be it the Standard Model or any other theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا