ترغب بنشر مسار تعليمي؟ اضغط هنا

The determination of the birth radius of the Sun is important to understand the evolution and consequent disruption of the Suns birth cluster in the Galaxy. Motivated by this fact, we study the motion of the Sun in the Milky Way during the last 4.6 G yr in order to find its birth radius. We carried out orbit integrations backward in time using an analytical model of the Galaxy which includes the contribution of spiral arms and a central bar. We took into account the uncertainty in the parameters of the Milky Way potential as well as the uncertainty in the present day position and velocity of the Sun. We find that in general the Sun has not migrated from its birth place to its current position in the Galaxy (R_odot). However, significant radial migration of the Sun is possible when: 1) The 2:1 Outer Lindblad resonance of the bar is separated from the corrotation resonance of spiral arms by a distance ~1 kpc. 2) When these two resonances are at the same Galactocentric position and further than the solar radius. In both cases the migration of the Sun is from outer regions of the Galactic disk to R_odot, placing the Suns birth radius at around 11 kpc. We find that in general it is unlikely that the Sun has migrated significantly from the inner regions of the Galactic disk to R_odot.
Astronomical phenomena are governed by processes on all spatial and temporal scales, ranging from days to the age of the Universe (13.8,Gyr) as well as from km size up to the size of the Universe. This enormous range in scales is contrived, but as lo ng as there is a physical connection between the smallest and largest scales it is important to be able to resolve them all, and for the study of many astronomical phenomena this governance is present. Although covering all these scales is a challenge for numerical modelers, the most challenging aspect is the equally broad and complex range in physics, and the way in which these processes propagate through all scales. In our recent effort to cover all scales and all relevant physical processes on these scales we have designed the Astrophysics Multipurpose Software Environment (AMUSE). AMUSE is a Python-based framework with production quality community codes and provides a specialized environment to connect this plethora of solvers to a homogeneous problem solving environment.
We study the evolution of embedded clusters. The equations of motion of the stars in the cluster are solved by direct N-body integration while taking the effects of stellar evolution and the hydrodynamics of the natal gas content into account. The gr avity of the stars and the surrounding gas are coupled self consistently to allow the realistic dynamical evolution of the cluster. While the equations of motion are solved, a stellar evolution code keeps track of the changes in stellar mass, luminosity and radius. The gas liberated by the stellar winds and supernovae deposits mass and energy into the gas reservoir in which the cluster is embedded. We examine cluster models with 1000 stars, but we varied the star formation efficiency (between 0.05-0.5), cluster radius (0.1-1.0 parsec), the degree of virial support of the initial population of stars (0-100%) and the strength of the feedback. We find that an initial star fraction $M_star/M_{rm tot} > 0.05$ is necessary for cluster survival. Survival is more likely if gas is not blown out violently by a supernova and if the cluster has time to approach virial equilibrium during out-gassing. While the cluster is embedded, dynamical friction drives early and efficient mass segregation in the cluster. Stars of $m gtrsim 2,M_odot$ are preferentially retained, at the cost of the loss of less massive stars. We conclude that the degree of mass segregation in open clusters such as the Pleiades is not the result of secular evolution but a remnant of its embedded stage.
We have performed a series of N-body simulations to model the Arches cluster. Our aim is to find the best fitting model for the Arches cluster by comparing our simulations with observational data and to constrain the parameters for the initial condit ions of the cluster. By neglecting the Galactic potential and stellar evolution, we are able to efficiently search through a large parameter space to determine e.g. the IMF, size, and mass of the cluster. We find, that the clusters observed present-day mass function can be well explained with an initial Salpeter IMF. The lower mass-limit of the IMF cannot be well constrained from our models. In our best models, the total mass and the virial radius of the cluster are initially (5.1 +/- 0.8) 10^4 Msun and 0.76 +/- 0.12 pc, respectively. The concentration parameter of the initial King model is w0 = 3-5.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا