ترغب بنشر مسار تعليمي؟ اضغط هنا

Radial Migration of the Sun in the Milky Way: a Statistical Study

110   0   0.0 ( 0 )
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The determination of the birth radius of the Sun is important to understand the evolution and consequent disruption of the Suns birth cluster in the Galaxy. Motivated by this fact, we study the motion of the Sun in the Milky Way during the last 4.6 Gyr in order to find its birth radius. We carried out orbit integrations backward in time using an analytical model of the Galaxy which includes the contribution of spiral arms and a central bar. We took into account the uncertainty in the parameters of the Milky Way potential as well as the uncertainty in the present day position and velocity of the Sun. We find that in general the Sun has not migrated from its birth place to its current position in the Galaxy (R_odot). However, significant radial migration of the Sun is possible when: 1) The 2:1 Outer Lindblad resonance of the bar is separated from the corrotation resonance of spiral arms by a distance ~1 kpc. 2) When these two resonances are at the same Galactocentric position and further than the solar radius. In both cases the migration of the Sun is from outer regions of the Galactic disk to R_odot, placing the Suns birth radius at around 11 kpc. We find that in general it is unlikely that the Sun has migrated significantly from the inner regions of the Galactic disk to R_odot.

قيم البحث

اقرأ أيضاً

We determine the radial abundance gradient of Cl in the Milky Way from HII regions spectra. For the first time, the Cl/H ratios are computed by simply adding ionic abundances and not using an ionization correction factor (ICF). We use a collection of published very deep spectra of Galactic HII regions. We have re-calculated the physical conditions, ionic and total abundances of Cl and O using the same methodology and updated atomic data for all the objects. We find that the slopes of the radial gradients of Cl and O are identical within the uncertainties: -0.043 dex/kpc. This is consistent with a lockstep evolution of both elements. We obtain that the mean value of the Cl/O ratio across the Galactic disc is log(Cl/O) = -3.42 +/- 0.06. We compare our Cl/H ratios with those determined from Cl++ abundances and using some available ICF schemes of the literature. We find that our total Cl abundances are always lower than the values determined using ICFs, indicating that those correction schemes systematically overestimate the contribution of Cl+ and Cl+++ species to the total Cl abundance. Finally, we propose an empirical ICF(Cl++) to estimate the Cl/H ratio in HII regions.
In the Milky Way, the thick disk can be defined using individual stellar abundances, kinematics, or age; or geometrically, as stars high above the mid-plane. In nearby galaxies, where only a geometric definition can be used, thick disks appear to hav e large radial scale-lengths, and their red colors suggest that they are uniformly old. The Milky Ways geometrically thick disk is also radially extended, but it is far from chemically uniform: alpha-enhanced stars are confined within the inner Galaxy. In simulated galaxies, where old stars are centrally concentrated, geometrically thick disks are radially extended, too. Younger stellar populations flare in the simulated disks outer regions, bringing those stars high above the mid-plane. The resulting geometrically thick disks therefore show a radial age gradient, from old in their central regions to younger in their outskirts. Based on our age estimates for a large sample of giant stars in the APOGEE survey, we can now test this scenario for the Milky Way. We find that the geometrically-defined thick disk in the Milky Way has indeed a strong radial age gradient: the median age for red clump stars goes from ~9 Gyr in the inner disk to 5 Gyr in the outer disk. We propose that at least some nearby galaxies could also have thick disks that are not uniformly old, and that geometrically thick disks might be complex structures resulting from different formation mechanisms in their inner and outer parts.
The Milky Way Project citizen science initiative recently increased the number of known infrared bubbles in the inner Galactic plane by an order of magnitude compared to previous studies. We present a detailed statistical analysis of this dataset wit h the Red MSX Source catalog of massive young stellar sources to investigate the association of these bubbles with massive star formation. We particularly address the question of massive triggered star formation near infrared bubbles. We find a strong positional correlation of massive young stellar objects (MYSOs) and H II regions with Milky Way Project bubbles at separations of < 2 bubble radii. As bubble sizes increase, a statistically significant overdensity of massive young sources emerges in the region of the bubble rims, possibly indicating the occurrence of triggered star formation. Based on numbers of bubble-associated RMS sources we find that 67+/-3% of MYSOs and (ultra)compact H II regions appear associated with a bubble. We estimate that approximately 22+/-2% of massive young stars may have formed as a result of feedback from expanding H II regions. Using MYSO-bubble correlations, we serendipitously recovered the location of the recently discovered massive cluster Mercer 81, suggesting the potential of such analyses for discovery of heavily extincted distant clusters.
126 - D. Katz , A. Gomez , M. Haywood 2021
The formation of the Galactic disc is an enthusiastically debated issue. Numerous studies and models seek to identify the dominant physical process(es) that shaped its observed properties. Taking advantage of the improved coverage of the inner Milky Way provided by the SDSS DR16 APOGEE catalogue and of the ages published in the APOGEE-AstroNN Value Added Catalogue (VAC), we examine the radial evolution of the chemical and age properties of the Galactic stellar disc, with the aim to better constrain its formation. Using a sample of 199,307 giant stars with precise APOGEE abundances and APOGEE-astroNN ages, selected in a +/-2 kpc layer around the galactic plane, we assess the dependency with guiding radius of: (i) the median metallicity, (ii) the ridge lines of the [Fe/H]-[Mg/Fe] and age-[Mg/Fe] distributions and (iii) the Age Distribution Function (ADF). The giant star sample allows us to probe the radial behaviour of the Galactic disc from Rg = 0 to 14-16 kpc. The thick disc [Fe/H]-[Mg/Fe] ridge lines follow closely grouped parallel paths, supporting the idea that the thick disc did form from a well-mixed medium. However, the ridge lines present a small drift in [Mg/Fe], which decreases with increasing guiding radius. At sub-solar metallicity, the intermediate and outer thin disc [Fe/H]-[Mg/Fe] ridge lines follow parallel sequences shifted to lower metallicity as the guiding radius increases. We interpret this pattern, as the signature of a dilution of the inter-stellar medium from Rg~6 kpc to the outskirt of the disc, which occured before the onset of the thin disc formation. The APOGEE-AstroNN VAC provides stellar ages for statistically significant samples of thin disc stars from the Galactic centre up to Rg~14 kpc. An important result provided by this dataset, is that the thin disc presents evidence of an inside-out formation up to R_g~10-12 kpc.(Abridged)
Open clusters (OCs) are crucial for studying the formation and evolution of the Galactic disc. However, the lack of a large number of OCs analyzed homogeneously hampers the investigations about chemical patterns and the existence of Galactocentric ra dial and vertical gradients, or an age-metallicity relation. To overcome this, we have designed the Open Cluster Chemical Abundances from Spanish Observatories survey (OCCASO). We aim to provide homogeneous radial velocities, physical parameters and individual chemical abundances of six or more Red Clump stars for a sample of 25 old and intermediate-age OCs visible from the Northern hemisphere. To do so, we use high resolution spectroscopic facilities (R> 62,000) available at Spanish observatories. We present the motivation, design and current status of the survey, together with the first data release of radial velocities for 77 stars in 12 OCs, which represents about 50% of the survey. We include clusters never studied with high-resolution spectroscopy before (NGC~1907, NGC~6991, NGC~7762), and clusters in common with other large spectroscopic surveys like the Gaia-ESO Survey (NGC~6705) and APOGEE (NGC~2682 and NGC~6819). We perform internal comparisons between instruments to evaluate and correct internal systematics of the results, and compare our radial velocities with previous determinations in the literature, when available. Finally, radial velocities for each cluster are used to perform a preliminar kinematic study in relation with the Galactic disc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا