ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear data for neutron-induced reactions in the intermediate energy range of 20 to 200 MeV are of great importance for the development of nuclear reaction codes since little data exist in that range. Also several different applications benefit from such data, notably accelerator-driven incineration of nuclear waste. The Medley setup was used for a series of measurements of p, d, t, $^3$He and $alpha$-particle production by 175 MeV quasi-mono-energetic neutrons on various target nuclei. The measurements were performed at the The Svedberg Laboratory in Uppsala, Sweden. Eight detector telescopes placed at angles between 20$^circ$ and 160$^circ$ were used. Medley uses the $Delta E$-$Delta E$-$E$ technique to discriminate among the particle types and is able to measure double-differential cross sections over a wide range of particle energies. This paper briefly describes the experimental setup, summarizes the data analysis and reports on recent changes in the previously reported preliminary data set on bismuth. Experimental data are compared with INCL4.5-Abla07, MCNP6 using CEM03.03, TALYS and PHITS model calculations as well as with nuclear data evaluations. The models agree fairly well overall but in some cases systematic differences are found.
The amount of emitted prompt neutrons from the fission fragments increases as a function of excitation energy. Yet it is not fully understood whether the increase in u(A) as a function of E_{n} is mass dependent. The share of excitation energies amo ng the fragments is still under debate, but there are reasons to believe that the excess in neutron emission originates only from the heavy fragments, leaving u_{light}(A) almost unchanged. In this work we investigated the consequences of a mass-dependent increase in u(A) on the final mass and energy distributions. The assumptions on u(A) are essential when analysing measurements based on the 2E-technique. This choice showed to be significant on the measured observables. For example, the post-neutron emission mass yield distribution revealed changes up to 10-30%. The outcome of this work pinpoint the urgent need to determine u(A) experimentally, and in particular, how u(A) changes as a function of incident-neutron energy. Until then, many fission yields in the data libraries could be largely affected, since they were analysed based on another assumption on the neutron emission.
96 - K. Jansson 2013
The Medley setup is planned to be moved to and used at the new neutron facility NFS where measurements of light-ion production and fission cross-sections are planned at 1-40 MeV. Medley has eight detector telescopes providing Delta E-Delta E-E data, each consisting of two silicon detectors and a CsI(Tl) detector at the back. The telescope setup is rotatable and can be made to cover any angle. Medley has previously been used in many measurements at The Svedberg Laboratory (TSL) in Uppsala mainly with a quasi-mono-energetic neutron beam at 96 and 175 MeV. To be able to do measurements at NFS, which will have a white neutron beam, Medley needs to detect the reaction products with a high temporal resolution providing the ToF of the primary neutron. In this paper we discuss the design of the Medley upgrade along with simulations of the setup. We explore the use of Parallel Plate Avalanche Counters (PPACs) which work very well for detecting fission fragments but require more consideration for detecting deeply penetrating particles.
We have measured double-differential cross sections in the interaction of 175 MeV quasimonoenergetic neutrons with O, Si, Fe and Bi. We have compared these results with model calculations with INCL4.5-Abla07, MCNP6 and TALYS-1.2. We have also compare d our data with PHITS calculations, where the pre-equilibrium stage of the reaction was accounted respectively using the JENDL/HE-2007 evaluated data library, the quantum molecular dynamics model (QMD) and a modified version of QMD (MQMD) to include a surface coalescence model. The most crucial aspect is the formation and emission of composite particles in the pre-equilibrium stage.
Double-differential cross sections for light-ion (p, d, t, 3He and alpha) production in carbon induced by 96 MeV neutrons have been measured at eight laboratory angles from 20 degrees to 160 degrees in steps of 20 degrees. Experimental techniques are presented as well as procedures for data taking and data reduction. Deduced energy-differential, angle-differential and production cross sections are reported. Experimental cross sections are compared with theoretical reaction model calculations and experimental data in the literature. The measured particle data show marked discrepancies from the results of the model calculations in spectral shape and magnitude. The measured production cross sections for protons, deuterons, tritons, 3He, and alpha particles support the trends suggested by data at lower energies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا