ترغب بنشر مسار تعليمي؟ اضغط هنا

Context: Absorption by molecules in the Earths atmosphere strongly affects ground-based astronomical observations. The resulting absorption line strength and shape depend on the highly variable physical state of the atmosphere, i.e. pressure, tempera ture, and mixing ratio of the different molecules involved. Usually, supplementary observations of so-called telluric standard stars (TSS) are needed to correct for this effect, which is expensive in terms of telescope time. We have developed the software package molecfit to provide synthetic transmission spectra based on parameters obtained by fitting narrow ranges of the observed spectra of scientific objects. These spectra are calculated by means of the radiative transfer code LBLRTM and an atmospheric model. In this way, the telluric absorption correction for suitable objects can be performed without any additional calibration observations of TSS. Aims: We evaluate the quality of the telluric absorption correction using molecfit with a set of archival ESO-VLT X-Shooter visible and near-infrared spectra. Methods: Thanks to the wavelength coverage from the U to the K band, X-Shooter is well suited to investigate the quality of the telluric absorption correction with respect to the observing conditions, the instrumental set-up, input parameters of the code, the signal-to-noise of the input spectrum, and the atmospheric profiles. These investigations are based on two figures of merit, I_off and I_res, that describe the systematic offsets and the remaining small-scale residuals of the corrections. We also compare the quality of the telluric absorption correction achieved with moelcfit to the classical method based on a telluric standard star. (Abridged)
227 - A. Smette , H. Sana , S. Noll 2015
Context: The interaction of the light from astronomical objects with the constituents of the Earths atmosphere leads to the formation of telluric absorption lines in ground-based collected spectra. Correcting for these lines, mostly affecting the red and infrared region of the spectrum, usually relies on observations of specific stars obtained close in time and airmass to the science targets, therefore using precious observing time. Aims: We present molecfit, a tool for correcting for telluric absorption lines based on synthetic modelling of the Earths atmospheric transmission. Molecfit is versatile and can be used with data obtained with various ground-based telescopes and instruments. Methods: Molecfit combines a publicly available radiative transfer code, a molecular line database, atmospheric profiles, and various kernels to model the instrument line spread function. The atmospheric profiles are created by merging a standard atmospheric profile representative of a given observatorys climate, of local meteorological data, and of dynamically retrieved altitude profiles for temperature, pressure, and humidity. We discuss the various ingredients of the method, its applicability, and its limitations. We also show examples of telluric line correction on spectra obtained with a suite of ESO Very Large Telescope (VLT) instruments. Results: Compared to previous similar tools, molecfit takes the best results for temperature, pressure, and humidity in the atmosphere above the observatory into account. As a result, the standard deviation of the residuals after correction of unsaturated telluric lines is frequently better than 2% of the continuum. Conclusion: Molecfit is able to accurately model and correct for telluric lines over a broad range of wavelengths and spectral resolutions. (Abridged)
Airglow emission lines, which dominate the optical-to-near-IR sky radiation, show strong, line-dependent variability on various time scales. Therefore, the subtraction of the sky background in the affected wavelength regime becomes a problem if plain sky spectra have to be taken at a different time as the astronomical data. A solution of this issue is the physically motivated scaling of the airglow lines in the plain sky data to fit the sky lines in the object spectrum. We have developed a corresponding instrument-independent approach based on one-dimensional spectra. Our code skycorr separates sky lines and sky/object continuum by an iterative approach involving a line finder and airglow line data. The sky lines are grouped according to their expected variability. The line groups in the sky data are then scaled to fit the sky in the science data. Required pixel-specific weights for overlapping groups are taken from a comprehensive airglow model. Deviations in the wavelength calibration are corrected by fitting Chebyshev polynomials and rebinning via asymmetric damped sinc kernels. The scaled sky lines and the sky continuum are subtracted separately. VLT X-Shooter data covering time intervals from two minutes to about one year were selected to illustrate the performance. Except for short time intervals of a few minutes, the sky line residuals were several times weaker than for sky subtraction without fitting. Further tests show that skycorr performs consistently better than the method of Davies (2007) developed for VLT SINFONI data.
75 - W. Kausch , S. Noll , A. Smette 2014
Correcting for the sky signature usually requires supplementary calibration data which are very expensive in terms of telescope time. In addition, the scheduling flexibility is restricted as these data have to be taken usually directly before/after t he science observations due to the high variability of the telluric absorption which depends on the state and the chemical composition of the atmosphere at the time of observations. Therefore, a tool for sky correction, which does not require this supplementary calibration data, saves a significant amount of valuable telescope time and increases its efficiency. We developed a software package aimed at performing telluric feature corrections on the basis of synthetic absorption spectra.
117 - V. Buat , S. Noll , D. Burgarella 2012
We study dust attenuation at UV wavelengths at high redshift, where the UV is redshifted to the observed visible. In particular, we search for a UV bump and related implications for dust attenuation determinations. We use data in the CDFS, obtained i n intermediate and broad band filters by the MUSYC project, to sample the UV rest-frame of 751 galaxies with 0.95<z<2.2. When available, Herschel/PACS data (GOODS-Herschel project), and Spitzer/MIPS measurements, are used to estimate the dust emission. The SED of each source is fit using the CIGALE code. The amount of dust attenuation and the dust attenuation curve are obtained as outputs of the SED fitting process, together with other parameters linked to the SFH. The global amount of dust attenuation at UV wavelengths is found to increase with stellar mass and to decrease as UV luminosity increases. A UV bump at 2175A is securely detected in 20% of the galaxies, and the mean amplitude of the bump for the sample is similar to that observed in the LMC supershell region. This amplitude is found to be lower in galaxies with very high SSFRs, and 90% of the galaxies exhibiting a secure bump are at z<1.5. The attenuation curve is confirmed to be steeper than that of local starburst galaxies for 20$% of the galaxies. The large dispersion found for these two parameters describing the attenuation law is likely to reflect a wide diversity of attenuation laws among galaxies. The relations between dust attenuation, IR-to-UV flux ratio, and the slope of the UV continuum are derived for the mean attenuation curve found for our sample. Deviations from the average trends are found to correlate with the age of the young stellar population and the shape of the attenuation curve.(abriged)
174 - S. Noll , W. Kausch , M. Barden 2012
The Earths atmosphere affects ground-based astronomical observations. Scattering, absorption, and radiation processes deteriorate the signal-to-noise ratio of the data received. For scheduling astronomical observations it is, therefore, important to accurately estimate the wavelength-dependent effect of the Earths atmosphere on the observed flux. In order to increase the accuracy of the exposure time calculator of the European Southern Observatorys (ESO) Very Large Telescope (VLT) at Cerro Paranal, an atmospheric model was developed as part of the Austrian ESO In-Kind contribution. It includes all relevant components, such as scattered moonlight, scattered starlight, zodiacal light, atmospheric thermal radiation and absorption, and non-thermal airglow emission. This paper focuses on atmospheric scattering processes that mostly affect the blue (< 0.55 mum) wavelength regime, and airglow emission lines and continuum that dominate the red (> 0.55 mum) wavelength regime. While the former is mainly investigated by means of radiative transfer models, the intensity and variability of the latter is studied with a sample of 1186 VLT FORS1 spectra. For a set of parameters such as the object altitude angle, Moon-object angular distance, ecliptic latitude, bimonthly period, and solar radio flux, our model predicts atmospheric radiation and transmission at a requested resolution. A comparison of our model with the FORS1 spectra and photometric data for the night-sky brightness from the literature, suggest a model accuracy of about 20%. This is a significant improvement with respect to existing predictive atmospheric models for astronomical exposure time calculators.
We present optical colors of 72 transneptunian objects (TNOs), and infrared colors of 80 TNOs obtained with the WFPC2 and NICMOS instruments, respectively, on the Hubble Space Telescope (HST). Both optical and infrared colors are available for 32 obj ects that overlap between the datasets. This dataset adds an especially uniform, consistent and large contribution to the overall sample of colors, particularly in the infrared. The range of our measured colors is consistent with other colors reported in the literature at both optical and infrared wavelengths. We find generally good agreement for objects measured by both us and others; 88.1% have better than 2 sigma agreement. The median Hv magnitude of our optical sample is 7.2, modestly smaller (~0.5 mag) than for previous samples. The median absolute magnitude, Hv, in our infrared sample is 6.7. We find no new correlations between color and dynamical properties (semi-major axis, eccentricity, inclination and perihelion). We do find that colors of Classical objects with i<6{deg} come from a different distribution than either the Resonant or excited populations in the visible at the >99.99% level with a K-S test. The same conclusion is found in the infrared at a slightly lower significance level, 99.72%. Two Haumea collision fragments with strong near infrared ice bands are easily identified with broad HST infrared filters and point to an efficient search strategy for identifying more such objects. We find evidence for variability in (19255) 1999 VK8, 1999 OE4, 2000 CE105, 1998 KG62 and 1998 WX31.
Photometric data of galaxies covering the rest-frame wavelength range from far-UV to far-IR make it possible to derive galaxy properties with a high reliability by fitting the attenuated stellar emission and the related dust emission at the same time . For this purpose we wrote the code CIGALE (Code Investigating GALaxy Emission) that uses model spectra composed of the Maraston (or PEGASE) stellar population models, synthetic attenuation functions based on a modified Calzetti law, spectral line templates, the Dale & Helou dust emission models, and optional spectral templates of obscured AGN. Depending on the input redshifts, filter fluxes are computed for the model set and compared to the galaxy photometry by carrying out a Bayesian-like analysis. CIGALE was tested by analysing 39 nearby galaxies selected from SINGS. The reliability of the different model parameters was evaluated by studying the resulting expectation values and their standard deviations in relation to the input model grid. Moreover, the influence of the filter set and the quality of photometric data on the code results was estimated. For up to 17 filters between 0.15 and 160 mum, we find robust results for the mass, star formation rate, effective age of the stellar population at 4000 A, bolometric luminosity, luminosity absorbed by dust, and attenuation in the far-UV. A study of the mutual relations between the reliable properties confirms the dependence of star formation activity on morphology in the local Universe and indicates a significant drop in this activity at about 10^11 M_sol towards higher total stellar masses. The dustiest sample galaxies are present in the same mass range. [abridged]
111 - S. Noll , D. Pierini , A. Cimatti 2009
The properties of dust attenuation at rest-frame UV wavelengths are inferred from very high-quality FORS2 spectra of 78 galaxies from the GMASS survey at 1<z<2.5. These objects complement a previously investigated sample of 108 UV-luminous galaxies a t similar redshifts, selected from the FDF spectroscopic survey, the K20 survey, and the GDDS. The shape of the UV extinction curve is constrained by a parametric description of the rest-frame UV continuum. The UV bump is further characterised by fitting Lorentzian-like profiles. Spectra exhibit a significant 2175A feature in at least 30% of the cases. If attenuation is dominated by dust ejected from the galaxy main body via superwinds, UV extinction curves in-between those of the SMC and LMC characterise the sample galaxies. The fraction of galaxies with extinction curves differing from the SMC one increases, if more dust resides in the galactic plane or dust attenuation depends on stellar age. On average, the width of the manifested UV bumps is about 60% of the values typical of the LMC and Milky Way. This suggests the presence of dust similar to that found in the LMC2 supershell close to 30Dor. The presence of the carriers of the UV bump at 1<z<2.5 argues for outflows from AGB stars being copious then. Consistent with their higher SFRs, the GMASS galaxies with a manifested UV bump are more luminous at rest-frame 8mum, where the emission is dominated by PAHs (also products of AGB stars). In addition, they exhibit stronger UV absorption features, mostly of interstellar origin, which indicates overall more evolved stellar populations. We conclude that diversification of the small-size dust component has already started in the most evolved star-forming systems at 1<z<2.5.
We present a comprehensive analysis of the stellar population properties (age, metallicity and the alpha-element enhancement [E/Fe]) and morphologies of red-sequence galaxies in 24 clusters and groups from z~0.75 to z~0.45. The dataset, consisting of 215 spectra drawn from the ESO Distant Cluster Survey, constitutes the largest spectroscopic sample at these redshifts for which such an analysis has been conducted. Analysis reveals that the evolution of the stellar population properties of red-sequence galaxies depend on their mass: while the properties of most massive are well described by passive evolution and high-redshift formation, the less massive galaxies require a more extended star formation history. We show that these scenarios reproduce the index-sigma relations as well as the galaxy colours. The two main results of this work are (1) the evolution of the line-strength indices for the red-sequence galaxies can be reproduced if 40% of the galaxies with sigma < 175 km/s entered the red-sequence between z=0.75 to z=0.45, in agreement with the fraction derived in studies of the luminosity functions, and (2) the percentage the red-sequence galaxies exhibiting early-type morphologies (E and S0) decreases by 20% from z=0.75 to z=0.45. This can be understood if the red-sequence gets populated at later times with disc galaxies whose star formation has been quenched. We conclude that the processes quenching star formation do not necessarily produce a simultaneous morphological transformation of the galaxies entering the red-sequence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا