ترغب بنشر مسار تعليمي؟ اضغط هنا

138 - S. Mao , J. Wang , M. C. Smith 2012
We study moderate gravitational lensing where a background galaxy is magnified substantially, but not multiply imaged, by an intervening galaxy. We focus on the case where both the lens and source are elliptical galaxies. The signatures of moderate l ensing include isophotal distortions and systematic shifts in the fundamental plane and Kormendy relation, which can potentially be used to statistically determine the galaxy mass profiles. These effects are illustrated using Monte Carlo simulations of galaxy pairs where the foreground galaxy is modelled as a singular isothermal sphere model and observational parameters appropriate for the Large Synoptic Survey Telescope (LSST). The range in radius probed by moderate lensing will be larger than that by strong lensing, and is in the interesting regime where the density slope may be changing.
60 - N. Jackson 2009
The incidence of sub-galactic level substructures is an important quantity, as it is a generic prediction of high-resolution Cold Dark Matter (CDM) models which is susceptible to observational test. Confrontation of theory with observations is curren tly in an uncertain state. In particular, gravitational lens systems appear to show evidence for flux ratio anomalies, which are expected from CDM substructures although not necessarily in the same range of radius as observed. However, the current small samples of lenses suggest that the lens galaxies in these systems are unusually often accompanied by luminous galaxies. Here we investigate a large sample of unlensed elliptical galaxies from the COSMOS survey, and determine the fraction of objects with satellites, in excess of background counts, as a function of satellite brightness and separation from the primary object. We find that the incidence of luminous satellites within 20 kpc is typically a few tenths of one percent for satellites of a few tenths of the primary flux, comparable to what is observed for the wider but shallower SDSS survey. Although the environments of lenses in the SLACS survey are compatible with this observation, the CLASS radio survey lenses are significantly in excess of this.
212 - D. D. Xu , J. Wang (2 2009
We use high-resolution Aquarius simulations of Milky Way-sized haloes in the LCDM cosmology to study the effects of dark matter substructures on gravitational lensing. Each halo is resolved with ~ 10^8 particles (at a mass resolution ~ 10^3-4 M_sun/h ) within its virial radius. Subhaloes with masses larger than 10^5 M_sun/h are well resolved, an improvement of at least two orders of magnitude over previous lensing studies. We incorporate a baryonic component modelled as a Hernquist profile and account for the response of the dark matter via adiabatic contraction. We focus on the anomalous flux ratio problem, in particular on the violation of the cusp-caustic relation due to substructures. We find that subhaloes with masses less than ~ 10^8 M_sun/h play an important role in causing flux anomalies; such low mass subhaloes have been unresolved in previous studies. There is large scatter in the predicted flux ratios between different haloes and between different projections of the same halo. In some cases, the frequency of predicted anomalous flux ratios is comparable to that observed for the radio lenses, although in most cases it is not. The probability for the simulations to reproduce the observed violations of the cusp lenses is about 0.001. We therefore conclude that the amount of substructure in the central regions of the Aquarius haloes is insufficient to explain the observed frequency of violations of the cusp-caustic relation. These conclusions are based purely on our dark matter simulations which ignore the effect of baryons on subhalo survivability.
Microlensing events are usually selected among single-peaked non-repeating light curves in order to avoid confusion with variable stars. However, a microlensing event may exhibit a second microlensing brightening episode when the source or/and the le ns is a binary system. A careful analysis of these repeating events provides an independent way to study the statistics of wide binary stars and to detect extrasolar planets. Previous theoretical studies predicted that 0.5 - 2 % of events should repeat due to wide binary lenses. We present a systematic search for such events in about 4000 light curves of microlensing candidates detected by the Optical Gravitational Lensing Experiment (OGLE) towards the Galactic Bulge from 1992 to 2007. The search reveals a total of 19 repeating candidates, with 6 clearly due to a wide binary lens. As a by-product we find that 64 events (~2% of the total OGLE-III sample) have been miss-classified as microlensing; these miss-classified events are mostly nova or other types of eruptive stars. The number and importance of repeating events will increase considerably when the next-generation wide-field microlensing experiments become fully operational in the future.
108 - S.E. Bryan , S. Mao , S.T. Kay 2008
Substructures, expected in cold dark matter haloes, have been proposed to explain the anomalous flux ratios in gravitational lenses. About 25% of lenses in the Cosmic Lens All-Sky Survey (CLASS) appear to have luminous satellites within ~ 5 kpc/h of the main lensing galaxies, which are usually at redshift z ~ 0.2-1. In this work we use the Millennium Simulation combined with galaxy catalogues from semi-analytical techniques to study the predicted frequency of such satellites in simulated haloes. The fraction of haloes that host bright satellites within the (projected) central regions is similar for red and blue hosts and is found to increase as a function of host halo mass and redshift. Specifically, at z = 1, about 11% of galaxy-sized haloes (with masses between 10^{12} M_sun/h and 10^{13} M_sun/h) host bright satellite galaxies within a projected radius of 5 kpc/h. This fraction increases to about 17% (25%) if we consider bright (all) satellites of only group-sized haloes (with masses between 10^{13} M_sun/h and 10^{14} M_sun/h). These results are roughly consistent with the fraction (~ 25%) of CLASS lensing galaxies observed to host luminous satellites. At z = 0, only ~ 3% of galaxy-sized haloes host bright satellite galaxies. The fraction rises to ~ 6%, (10%) if we consider bright (all) satellites of only group-sized haloes at z = 0. However, most of the satellites found in the inner regions are `orphan galaxies where the dark matter haloes have been completely stripped. Thus the agreement crucially depends on the true survival rate of these `orphan galaxies. We also discuss the effects of numerical resolution and cosmologies on our results.
175 - J.P. Beaulieu , E. Kerins , S. Mao 2008
Thirteen exo-planets have been discovered using the gravitational microlensing technique (out of which 7 have been published). These planets already demonstrate that super-Earths (with mass up to ~10 Earth masses) beyond the snow line are common and multiple planet systems are not rare. In this White Paper we introduce the basic concepts of the gravitational microlensing technique, summarise the current mode of discovery and outline future steps towards a complete census of planets including Earth-mass planets. In the near-term (over the next 5 years) we advocate a strategy of automated follow-up with existing and upgraded telescopes which will significantly increase the current planet detection efficiency. In the medium 5-10 year term, we envision an international network of wide-field 2m class telescopes to discover Earth-mass and free-floating exo-planets. In the long (10-15 year) term, we strongly advocate a space microlensing telescope which, when combined with Kepler, will provide a complete census of planets down to Earth mass at almost all separations. Such a survey could be undertaken as a science programme on Euclid, a dark energy probe with a wide-field imager which has been proposed to ESAs Cosmic Vision Programme.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا