ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar activity can produce large amounts of high-energy radiation, which is absorbed by the planetary atmosphere leading to irradiation-driven mass-loss. We present the detection and an investigation of high-energy emission in a transiting super-Ea rth host system, GJ 1214, based on an XMM-Newton observation. We derive an X-ray luminosity LX=7.4E25 erg/s and a corresponding activity level of log(LX/Lbol)~ -5.3. Further, we determine a coronal temperature of about -3.5 MK, which is typical for coronal emission of moderately active low-mass stars. We estimate that GJ 1214 b evaporates at a rate of 1.3E10 g/s and has lost a total of ~2-5.6 MEarth.
Although chromospheric activity cycles have been studied in a larger number of late-type stars for quite some time, very little is known about coronal activity-cycles in other stars and their similarities or dissimilarities with the solar activity cy cle. While it is usually assumed that cyclic activity is present only in stars of low to moderate activity, we investigate whether the ultra-fast rotator AB Dor, a K dwarf exhibiting signs of substantial magnetic activity in essentially all wavelength bands, exhibits a X-ray activity cycle in analogy to its photospheric activity cycle of about 17 years and possible correlations between these bands. We analysed the combined optical photometric data of AB Dor A, which span ~35 years. Additionally, we used ROSAT and XMM-Newton X-ray observations of AB Dor A to study the long-term evolution of magnetic activity in this active K dwarf over nearly three decades and searched for X-ray activity cycles and related photometric brightness changes. AB Dor A exhibits photometric brightness variations ranging between 6.75 < Vmag < 7.15 while the X-ray luminosities range between 29.8 < log LX [erg/s] < 30.2 in the 0.3-2.5 keV. As a very active star, AB Dor A shows frequent X-ray flaring, but, in the long XMM-Newton observations a kind of basal state is attained very often. This basal state probably varies with the photospheric activity-cycle of AB Dor A which has a period of ~17 years, but, the X-ray variability amounts at most to a factor of ~2, which is, much lower than the typical cycle amplitudes found on the Sun.
We present the first observational evidence of multiple slow acoustic oscillations in the post flaring loops of the corona of Proxima Centauri using XMM-Newton observations. We find the signature of periodic oscillations localized in the decay phase of the flare in its soft (0.3-10.0 keV) X-ray emissions. Using the standard wavelet tool, we find the multiple periodicities of 1261 s and 687 s. These bursty oscillations persist for durations of 90 minutes and 50 minutes, respectively, for more than 4 cycles. The intensity oscillations with the period of 1261 s may be the signature of the fundamental mode of slow magnetoacoustic waves with the phase-speed of 119 km s$^{-1}$ in the loop of the length 7.5$times 10^{9}$ cm heated initially to obtain the flare peak temperature of 33 MK and later cooled down in the decay phase maintained at the average temperature of 7.2 MK. The other period of 687 s may be associated with the first overtone of slow magnetoacoustic oscillations in the flaring loop. The fundamental mode oscillations show a dissipation with damping time of 47 min. The period ratio P$_{1}$/P$_{2}$ is found to be 1.83 indicating that such oscillations are most likely excited in longitudinal density stratified stellar loops. We estimate the density scale height of stellar loop system as 22.6 Mm, which is smaller than the hydrostatic scale height of the hot loop system, and implies the existence of non-equilibrium conditions.
We study the chromosphere and corona of the ultra-fast rotator AB Dor A at high temporal and spectral resolution using simultaneous observations with XMM-Newton in the X-rays, VLT/UVES in the optical, and the ATCA in the radio. Our optical spectra ha ve a resolving power of ~50 000 with a time cadence of ~1 min. Our observations continuously cover more than one rotational period and include both quiescent periods and three flaring events of different strengths. From the X-ray observations we investigated the variations in coronal temperature, emission measure, densities, and abundance. We interpreted our data in terms of a loop model. From the optical data we characterise the flaring chromospheric material using numerous emission lines that appear in the course of the flares. A detailed analysis of the line shapes and line centres allowed us to infer physical characteristics of the flaring chromosphere and to coarsely localise the flare event on the star. We specifically used the optical high-cadence spectra to demonstrate that both, turbulent and Stark broadening are present during the first ten minutes of the first flare. Also, in the first few minutes of this flare, we find short-lived (one to several minutes) emission subcomponents in the H{alpha} and Ca ii K lines, which we interpret as flare-connected shocks owing to their high intrinsic velocities. Combining the space-based data with the results of our optical spectroscopy, we derive flare-filling factors. Finally, comparing X-ray, optical broadband, and line emission, we find a correlation for two of the three flaring events, while there is no clear correlation for one event. Also, we do not find any correlation of the radio data to any other observed data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا