ترغب بنشر مسار تعليمي؟ اضغط هنا

93 - K. Liu , S. L. Bi , T. D. Li 2014
The aim of this paper is to determinate the fundamental parameters of six exoplanet host (EH) stars and their planets. While techniques for detecting exoplanets yield properties of the planet only as a function of the properties of the host star, hen ce, we must accurately determine parameters of EH stars at first. For this reason, we constructed a grid of stellar models including diffusion and rotation-induced extra-mixing with given ranges of input parameters (i.e. mass, metallicity, and initial rotation rate). In addition to the commonly used observational constraints such as the effective temperature T_{eff}, luminosity L and metallicity [Fe/H], we added two observational constraints, the lithium abundance log N (Li) and the rotational period P_{rot}. These two additional observed parameters can make further constrains on the model due to their correlations with mass, age and other stellar properties. Hence, our estimations of fundamental parameters for these EH stars and their planets are with higher precision than previous works. Therefore, the combination of rotational period and lithium help us to obtain more accurate parameters for stars, leading to an improvement of the knowledge of the physical state about the EH stars and their planets.
101 - Y. K. Tang , S. L. Bi , N. Gai 2008
Asteroseismology, as a tool to use the indirect information contained in stellar oscillations to probe the stellar interiors, is an active field of research presently. Stellar age, as a fundamental property of star apart from its mass, is most diffic ult to estimate. In addition, the estimating of stellar age can provide the chance to study the time evolution of astronomical phenomena. In our poster, we summarize our previous work and further present a method to determine age of low-mass main-sequence star.
85 - Y. K. Tang , S. L. Bi , N. Gai 2008
The basic intent of this paper is to model 70 Ophiuchi A using the latest asteroseismic observations as complementary constraints and to determine the fundamental parameters of the star. Additionally, we propose a new quantity to lift the degeneracy between the initial chemical composition and stellar age. Using the Yale stellar evolution code (YREC7), we construct a series of stellar evolutionary tracks for the mass range $M$ = 0.85 -- 0.93 $M_{odot}$ with different composition $Y_{i}$ (0.26 -- 0.30) and $Z_{i}$ (0.017 -- 0.023). Along these tracks, we select a grid of stellar model candidates that fall within the error box in the HR diagram to calculate the theoretical frequencies, the large- and small- frequency separations using the Guenthers stellar pulsation code. Following the asymptotic formula of stellar $p$-modes, we define a quantity $r_{01}$ which is correlated with stellar age. Also, we test it by theoretical adiabatic frequencies of many models. Many detailed models of 70 Ophiuchi A have been listed in Table 3. By combining all non-asteroseismic observations available for 70 Ophiuchi A with these seismological data, we think that Model 60, Model 125 and Model 126, listed in Table 3, are the optimum models presently. Meanwhile, we predict that the radius of this star is about 0.860 -- 0.865 $R_{odot}$ and the age is about 6.8 -- 7.0 Gyr with mass 0.89 -- 0.90 $M_{odot}$. Additionally, we prove that the new quantity $r_{01}$ can be a useful indicator of stellar age.
301 - W. M. Yang , S. L. Bi 2008
The purpose of this work was to obtain diffusion coefficient for the magnetic angular momentum transport and material transport in a rotating solar model. We assumed that the transport of both angular momentum and chemical elements caused by magnetic fields could be treated as a diffusion process. The diffusion coefficient depends on the stellar radius, angular velocity, and the configuration of magnetic fields. By using of this coefficient, it is found that our model becomes more consistent with the helioseismic results of total angular momentum, angular momentum density, and the rotation rate in a radiative region than the one without magnetic fields. Not only can the magnetic fields redistribute angular momentum efficiently, but they can also strengthen the coupling between the radiative and convective zones. As a result, the sharp gradient of the rotation rate is reduced at the bottom of the convective zone. The thickness of the layer of sharp radial change in the rotation rate is about 0.036 $R_{odot}$ in our model. Furthermore, the difference of the sound-speed square between the seismic Sun and the model is improved by mixing the material that is associated with angular momentum transport.
125 - W. M. Yang , S. L. Bi 2008
Using reconstructed opacities, we construct solar models with low heavy-element abundance. Rotational mixing and enhanced diffusion of helium and heavy elements are used to reconcile the recently observed abundances with helioseismology. The sound sp eed and density of models where the relative and absolute diffusion coefficients for helium and heavy elements have been increased agree with seismically inferred values at better than the 0.005 and 0.02 fractional level respectively. However, the surface helium abundance of the enhanced diffusion model is too low. The low helium problem in the enhanced diffusion model can be solved to a great extent by rotational mixing. The surface helium and the convection zone depth of rotating model M04R3, which has a surface Z of 0.0154, agree with the seismic results at the levels of 1 $sigma$ and 3 $sigma$ respectively. M04R3 is almost as good as the standard model M98. Some discrepancies between the models constructed in accord with the new element abundances and seismic constraints can be solved individually, but it seems difficult to resolve them as a whole scenario.
57 - W. M. Yang , S. L. Bi 2007
Aims. The purpose of this work is to investigate a new frequency separation of stellar p-modes and its characteristics. Methods. Frequency separations are deduced from the asymptotic formula of stellar p-modes. Then, using the theoretical adiabatic f requencies of stellar model, we compute the frequency separations. Results. A new separation $sigma_{l-1 l+1}(n)$, which is similar to the scaled small separation $d_{l l+2}(n)/(2l+3)$, is obtained from the asymptotic formula of stellar p-modes. The separations $sigma_{l-1 l+1}(n)$ and $d_{l l+2}(n)/(2l+3)$ have the same order. And like the small separation, $sigma_{l-1 l+1}(n)$ is mainly sensitive to the conditions in the stellar core. However, with the decrease of the central hydrogen abundance of stars, the $sigma_{02}$ and $sigma_{13}$ more and more deviate from the scaled small separation. This characteristic could be used to extract the information on the central hydrogen abundance of stars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا