ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a new precision measurement of parity-violating electron scattering on the proton at very low Q^2 and forward angles to challenge predictions of the Standard Model and search for new physics. A unique opportunity exists to carry out the fi rst precision measurement of the protons weak charge, $Q_W =1 - 4sin^2theta_W$. A 2200 hour measurement of the parity violating asymmetry in elastic ep scattering at Q^2=0.03 (GeV/c)^2 employing 180 $mu$A of 85% polarized beam on a 35 cm liquid Hydrogen target will determine the protons weak charge with approximately 4% combined statistical and systematic errors. The Standard Model makes a firm prediction of $Q_W$, based on the running of the weak mixing angle from the Z0 pole down to low energies, corresponding to a 10 sigma effect in this experiment.
58 - M. Huang , Z. Chen , S. Kowalski 2010
Isoscaling is derived within a recently proposed modified Fisher model where the free energy near the critical point is described by the Landau O(m^6) theory. In this model m = (N-Z)/A is the order parameter, a consequence of (one of) the symmetries of the nuclear Hamiltonian. Within this framework we show that isoscaling depends mainly on this order parameter through the external (conjugate) field H. The external field is just given by the difference in chemical potentials of the neutrons and protons of the two sources. To distinguish from previously employed isoscaling relationships, this approach is dubbed: m - scaling. We discuss the relationship between this framework and the standard isoscaling formalism and point out some substantial differences in interpretation of experimental results which might result. These should be investigated further both theoretically and experimentally.
65 - M. Huang , Z. Chen , S. Kowalski 2010
The relative isobaric yields of fragments produced in a series of heavy ion induced multifragmentation reactions have been analyzed in the framework of a Modified Fisher Model, primarily to determine the ratio of the symmetry energy coefficient to th e temperature, $a_a/T$, as a function of fragment mass A. The extracted values increase from 5 to ~16 as A increases from 9 to 37. These values have been compared to the results of calculations using the Antisymmetrized Molecular Dynamics (AMD) model together with the statistical decay code Gemini. The calculated ratios are in good agreement with those extracted from the experiment. In contrast, the ratios determined from fitting the primary fragment distributions from the AMD model calculation are ~ 4 and show little variation with A. This observation indicates that the value of the symmetry energy coefficient derived from final fragment observables may be significantly different than the actual value at the time of fragment formation. The experimentally observed pairing effect is also studied within the same simulations. The Coulomb coefficient is also discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا