ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of the electron spin relaxation in graphene on the SiO$_2$ substrate is developed. Charged impurities and polar optical surface phonons in the substrate induce an effective random Bychkov-Rashba-like spin-orbit coupling field which leads to sp in relaxation by the Dyakonov-Perel mechanism. Analytical estimates and Monte Carlo simulations show that the corresponding spin relaxation times are between micro- to milliseconds, being only weakly temperature dependent. It is also argued that the presence of adatoms on graphene can lead to spin lifetimes shorter than nanoseconds.
The electronic band structure of graphene in the presence of spin-orbit coupling and transverse electric field is investigated from first principles using the linearized augmented plane-wave method. The spin-orbit coupling opens a gap at the $K(K)$-p oint of the magnitude of 24 $mu$eV (0.28 K). This intrinsic splitting comes 96% from the usually neglected $d$ and higher orbitals. The electric field induces an additional (extrinsic) Bychkov-Rashba-type splitting of 10 $mu$eV (0.11 K) per V/nm, coming from the $sigma$-$pi$ mixing. A mini-ripple configuration with every other atom is shifted out of the sheet by less than 1% differs little from the intrinsic case.
207 - M. Pletyukhov , S. Konschuh 2007
We analytically evaluate charge and spin density response functions of the clean two-dimensional electron gas with Rashba spin-orbit coupling at finite momenta and frequencies. On the basis of our exact expressions we discuss the accuracy of the long -wavelength and the quasiclassical approximations. We also derive the static limit of spin susceptibilities and demonstrate, in particular, how the Kohn-like anomalies in their derivatives are related to the spin-orbit modification of the Ruderman-Kittel-Kasuya-Yosida interaction. Taking into account screening and exchange effects of the Coulomb interaction, we describe the collective charge and spin density excitation modes which appear to be coupled due to nonvanishing spin-charge response function.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا