ترغب بنشر مسار تعليمي؟ اضغط هنا

Band-structure topologies of graphene: spin-orbit coupling effects from first principles

189   0   0.0 ( 0 )
 نشر من قبل Martin Gmitra
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic band structure of graphene in the presence of spin-orbit coupling and transverse electric field is investigated from first principles using the linearized augmented plane-wave method. The spin-orbit coupling opens a gap at the $K(K)$-point of the magnitude of 24 $mu$eV (0.28 K). This intrinsic splitting comes 96% from the usually neglected $d$ and higher orbitals. The electric field induces an additional (extrinsic) Bychkov-Rashba-type splitting of 10 $mu$eV (0.11 K) per V/nm, coming from the $sigma$-$pi$ mixing. A mini-ripple configuration with every other atom is shifted out of the sheet by less than 1% differs little from the intrinsic case.



قيم البحث

اقرأ أيضاً

219 - Frank Freimuth , Stefan Blugel , 2021
We compute spin-orbit torques (SOTs) in strained PtMnSb from first principles. We consider both tetragonal strain and shear strain. We find a strong linear dependence of the field-like SOTs on these strains, while the antidamping SOT is only moderate ly sensitive to shear strain and even insensitive to tetragonal strain. We also study the dependence of the SOT on the magnetization direction. In order to obtain analytical expressions suitable for fitting our numerical textit{ab-initio} results we derive a general expansion of the SOT in terms of all response tensors that are allowed by crystal symmetry. Our expansion includes also higher-order terms beyond the usually considered lowest order. We find that the dependence on the strain is much smaller for the higher-order terms than for the lowest order terms. In order to judge the sensitivity of the SOT on the exchange correlation potential we compute the SOT in both GGA and LDA. We find that the higher-order terms depend significantly on the exchange-correlation potential, while the lowest order terms are insensitive to it. Since the higher-order terms are small in comparison to the lowest order terms the total SOT is insensitive to the exchange correlation potential in strained PtMnSb.
We determine the fundamental electronic and optical properties of the high-thermal-conductivity III-V semiconductor boron arsenide (BAs) using density functional and many body perturbation theory including quasiparticle and spin-orbit coupling correc tions. We find that the fundamental band gap is indirect with a value of 2.049 eV, while the minimum direct gap has a value of 4.135 eV. We calculate the carrier effective masses and report smaller values for the holes than the electrons, indicating higher hole mobility and easier p-type doping. The small difference between the static and high frequency dielectric constants indicates that BAs is only weakly ionic. We also observe that the imaginary part of the dielectric function exhibits a strong absorption peak, which corresponds to parallel bands in the band structure. Our estimated exciton binding energy of 43 meV indicates that excitons are relatively stable against thermal dissociation at room temperature. Our work provides theoretical insights on the fundamental electronic properties of BAs to guide experimental characterization and device applications.
We have examined theoretically the electronic band structure and Fermi surface of tetragonal low-temperature superconductor Bi2Pd. Our main results are that (i) the Pd 4d and Bi 6p states determine the main peculiarities of the multiple-sheets FS top ology, thus for this material the complicated superconducting gap structure with different energy gaps on different FS sheets should be assumed; (ii) the effect of the spin-orbit coupling is of minor importance for the distributions of the near-Fermi electronic states; and (iii) this phase adopts 3D-like type owing to the directional bonds between the adjacent atomic sheets.
Spin-orbit coupling (SOC) is essential in understanding the properties of 5d transition metal compounds, whose SOC value is large and almost comparable to other key parameters. Over the past few years, there have been numerous studies on the SOC-driv en effects of the electronic bands, magnetism, and spin-orbit entanglement for those materials with a large SOC. However, it is less studied and remains an unsolved problem in how the SOC affects the lattice dynamics. We, therefore, measured the phonon spectra of 5d pyrochlore Cd2Os2O7 over the full Brillouin zone to address the question by using inelastic x-ray scattering (IXS). Our main finding is a visible mode-dependence in the phonon spectra, measured across the metal-insulator transition at 227 K. We examined the SOC strength dependence of the lattice dynamics and its spin-phonon (SP) coupling, with first-principle calculations. Our experimental data taken at 100 K are in good agreement with the theoretical results obtained with the optimized U = 2.0 eV with SOC. By scaling the SOC strength and the U value in the DFT calculations, we demonstrate that SOC is more relevant than U to explaining the observed mode-dependent phonon energy shifts with temperature. Furthermore, the temperature dependence of the phonon energy can be effectively described by scaling SOC. Our work provides clear evidence of SOC producing a non-negligible and essential effect on the lattice dynamics of Cd2Os2O7 and its SP coupling.
We use a recently developed self-consistent GW approximation to present first principles calculations of the conduction band spin splitting in GaAs under [110] strain. The spin orbit interaction is taken into account as a perturbation to the scalar r elativistic hamiltonian. These are the first calculations of conduction band spin splitting under deformation based on a quasiparticle approach; and because the self-consistent GW scheme accurately reproduces the relevant band parameters, it is expected to be a reliable predictor of spin splittings. We also discuss the spin relaxation time under [110] strain and show that it exhibits an in-plane anisotropy, which can be exploited to obtain the magnitude and sign of the conduction band spin splitting experimentally.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا