ترغب بنشر مسار تعليمي؟ اضغط هنا

We demonstrate a one to one correspondence between the polarization state of a light pulse tuned to neutral exciton resonances of single semiconductor quantum dots and the spin state of the exciton that it photogenerates. This is accomplished using t wo variably polarized and independently tuned picosecond laser pulses. The first writes the spin state of the resonantly excited exciton. The second is tuned to biexcitonic resonances, and its absorption is used to read the exciton spin state. The absorption of the second pulse depends on its polarization relative to the exciton spin direction. Changes in the exciton spin result in corresponding changes in the intensity of the photoluminescence from the biexciton lines which we monitor, obtaining thus a one to one mapping between any point on the Poincare sphere of the light polarization to a point on the Bloch sphere of the exciton spin.
169 - E. Poem , S. Khatsevich , Y. Benny 2009
We measured the polarization memory of excitonic and biexcitonic optical transitions from single quantum dots at either positive, negative or neutral charge states. Positive, negative and no circular or linear polarization memory was observed for var ious spectral lines, under the same quasi-resonant excitation below the wetting layer band-gap. We developed a model which explains both qualitatively and quantitatively the experimentally measured polarization spectrum for all these optical transitions. We consider quite generally the loss of spin orientation of the photogenerated electron-hole pair during their relaxation towards the many-carrier ground states. Our analysis unambiguously demonstrates that while electrons maintain their initial spin polarization to a large degree, holes completely dephase.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا