ترغب بنشر مسار تعليمي؟ اضغط هنا

BaCo$_2$V$_2$O$_8$ is a one-dimensional antiferromagnetic spin-1/2 chain system with pronounced Ising anisotropy of the magnetic exchange. Due to finite interchain interactions long-range antiferromagnetic order develops below $T_{rm N} simeq 5.5$ K, which is accompanied by a structural distortion in order to lift magnetic frustration effects. The corresponding temperature $vs. $ magnetic-field phase diagram is highly anisotropic with respect to the magnetic-field direction and various details are still under vivid discussion. Here, we report the influence of several substitutions on the magnetic properties and the phase diagrams of BaCo$_2$V$_2$O$_8$. We investigate the substitution series Ba$_{text{1-x}}$Sr$_{text{x}}$Co$_{text{2}}$V$_{text{2}}$O$_{text{8}}$ over the full range $0le x le 1$ as well as the influence of a partial substitution of the magnetic Co$^{2+}$ by small amounts of other magnetic transition metals or by non-magnetic magnesium. In all cases, the phase diagrams were obtained on single crystals from magnetization data and/or high-resolution studies of the thermal expansion and magnetostriction.
In the effective Ising spin-1/2 antiferromagnetic chain system BaCo$_2$V$_2$O$_8, the magnetic-field influence is highly anisotropic. For magnetic fields along the easy axis $c$, the N{e}el order is strongly suppressed already for low fields and an i ncommensurate order is entered above 4 T. We present a detailed study of the magnetic phase diagrams for different magnetic field directions, which are derived from magnetization data, high-resolution thermal expansion and magnetostriction measurements as well as from the thermal conductivity. Zero-field thermal expansion data reveal that the magnetic transition is accompanied by an orthorhombic distortion within the $ab$ plane. Under ambient conditions the crystals are heavily twinned, but the domain orientation can be influenced either by applying uniaxial pressure or a magnetic field along the [100] direction. In addition, our data reveal a pronounced in-plane magnetic anisotropy for fields applied within the $ab$ plane. For $H || [110]$, the magnetic field influence on T$_N$ is weak, whereas for magnetic fields applied along [100], T$_N$ vanishes at about 10 T and the zero-field N{e}el order is completely suppressed as is confirmed by neutron diffraction data. The second-order phase transition strongly suggests a quantum critical point being present at $Hsimeq 10$ T parallel [100], where the N{e}el order probably changes to a spin-liquid state.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا