ﻻ يوجد ملخص باللغة العربية
BaCo$_2$V$_2$O$_8$ is a one-dimensional antiferromagnetic spin-1/2 chain system with pronounced Ising anisotropy of the magnetic exchange. Due to finite interchain interactions long-range antiferromagnetic order develops below $T_{rm N} simeq 5.5$ K, which is accompanied by a structural distortion in order to lift magnetic frustration effects. The corresponding temperature $vs. $ magnetic-field phase diagram is highly anisotropic with respect to the magnetic-field direction and various details are still under vivid discussion. Here, we report the influence of several substitutions on the magnetic properties and the phase diagrams of BaCo$_2$V$_2$O$_8$. We investigate the substitution series Ba$_{text{1-x}}$Sr$_{text{x}}$Co$_{text{2}}$V$_{text{2}}$O$_{text{8}}$ over the full range $0le x le 1$ as well as the influence of a partial substitution of the magnetic Co$^{2+}$ by small amounts of other magnetic transition metals or by non-magnetic magnesium. In all cases, the phase diagrams were obtained on single crystals from magnetization data and/or high-resolution studies of the thermal expansion and magnetostriction.
Since the seminal ideas of Berezinskii, Kosterlitz and Thouless, topological excitations are at the heart of our understanding of a whole novel class of phase transitions. In most of the cases, those transitions are controlled by a single type of top
Combining inelastic neutron scattering and numerical simulations, we study the quasi-one dimensional Ising anisotropic quantum antiferromagnet bacovo in a longitudinal magnetic field. This material shows a quantum phase transition from a Neel ordered
We report $^{51}$V nuclear magnetic resonance (NMR) and inelastic neutron scattering (INS) measurements on a quasi-1D antiferromagnet BaCo$_2$V$_2$O$_8$ under transverse field along the [010] direction. The scaling behavior of the spin-lattice relaxa
Large single crystals of the new compound SrMn$_2$V$_2$O$_8$ have been grown by the floating-zone method. This transition-metal based oxide is isostructural to SrNi$_2$V$_2$O$_8$, described by the tetragonal space group $I4_1cd$. Magnetic properties
The magnetic properties of the two-dimensional, S=1 honeycomb antiferromagnet BaNi$_2$V$_2$O$_8$ have been comprehensively studied using DC susceptibility measurements and inelastic neutron scattering techniques. The magnetic excitation spectrum is f