ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the entire sample of ultraviolet (UV) spectra of supernovae (SNe) obtained with the Ultraviolet/Optical Telescope (UVOT) on board the Swift satellite during the first 2 years of observations (2005/2006). A total of 29 UV-grism and 22 V-gri sm spectra of 9 supernovae (SNe) have been collected, of which 6 are thermonuclear (type Ia) and 3 core collapse (type Ibc/II) SNe. All the spectra have been obtained during the photospheric phase. After a comparison of the spectra of our sample with those in the literature (SNe 1992A, 1990N and 1999em), we confirm some degree of diversity in the UV emission of Type Ia SNe and a greater homogeneity in the Type II Plateau SN sample. Signatures of interaction between the ejecta and the circumstellar environment have been found in the UV spectrum of SN 2006jc, the only SN Type Ib/c for which UVOT grism data are available. Currently, Swift UVOT is the best suited instrument for early SN studies in the UV due to its fast response and flexible scheduling capabilities. However, in order to increase the quality of the data and significantly improve our understanding of the UV properties of SNe and to fully maximize the scientific potential of UVOT grism observations, a larger investment in observing time and longer exposures are needed.
The peculiar Type Ib supernova (SN) 2006jc has been observed with the UV/Optical Telescope (UVOT) and X-Ray Telescope (XRT) on board the Swift observatory over a period of 19 to 183 days after the explosion. Signatures of interaction of the outgoing SN shock with dense circumstellar material (CSM) are detected, such as strong X-ray emission (L_{0.2-10} > E39 erg/s) and the presence of MgII 2800A line emission visible in the UV spectra. In combination with a Chandra observation obtained on day 40 after the explosion, the X-ray light curve is constructed, which shows a unique rise of the X-ray emission by a factor of ~5 over a period of ~4 months, followed by a rapid decline. We interpret the unique X-ray and UV properties as a result of the SN shock interacting with a shell of material that was deposited by an outburst of the SN progenitor two years prior to the explosion. Our results are consistent with the explosion of a Wolf-Rayet star that underwent an episodic mass ejection qualitatively similar to those of luminous blue variable stars prior to its explosion. This led to the formation of a dense (>E7 cm**-3) shell at a distance of ~E16 cm from the site of the explosion, which expands with the WR wind at a velocity of (1300+/-300) km/s.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا