ترغب بنشر مسار تعليمي؟ اضغط هنا

Swift and Chandra Detections of Supernova 2006jc: Evidence for Interaction of the Supernova Shock with a Circumstellar Shell

43   0   0.0 ( 0 )
 نشر من قبل Stefan Immler
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The peculiar Type Ib supernova (SN) 2006jc has been observed with the UV/Optical Telescope (UVOT) and X-Ray Telescope (XRT) on board the Swift observatory over a period of 19 to 183 days after the explosion. Signatures of interaction of the outgoing SN shock with dense circumstellar material (CSM) are detected, such as strong X-ray emission (L_{0.2-10} > E39 erg/s) and the presence of MgII 2800A line emission visible in the UV spectra. In combination with a Chandra observation obtained on day 40 after the explosion, the X-ray light curve is constructed, which shows a unique rise of the X-ray emission by a factor of ~5 over a period of ~4 months, followed by a rapid decline. We interpret the unique X-ray and UV properties as a result of the SN shock interacting with a shell of material that was deposited by an outburst of the SN progenitor two years prior to the explosion. Our results are consistent with the explosion of a Wolf-Rayet star that underwent an episodic mass ejection qualitatively similar to those of luminous blue variable stars prior to its explosion. This led to the formation of a dense (>E7 cm**-3) shell at a distance of ~E16 cm from the site of the explosion, which expands with the WR wind at a velocity of (1300+/-300) km/s.

قيم البحث

اقرأ أيضاً

We present initial results of a 750 ks Chandra observation of the remnant of Keplers supernova of AD 1604. The strength and prominence of iron emission, together with the absence of O-rich ejecta, demonstrate that Kepler resulted from a thermonuclear supernova, even though evidence for circumstellar interaction is also strong. We have analyzed spectra of over 100 small regions, and find that they fall into three classes. (1) The vast majority show Fe L emission between 0.7 and 1 keV and Si and S K alpha emission; we associate these with shocked ejecta. A few of these are found at or beyond the mean blast wave radius. (2) A very few regions show solar O/Fe abundance rations; these we associate with shocked circumstellar medium (CSM). Otherwise O is scarce. (3) A few regions are dominated by continuum, probably synchrotron radiation. Finally, we find no central point source, with a limit about 100 times fainter than the central object in Cas A. The evidence that the blast wave is interacting with CSM may indicate a Ia explosion in a more massive progenitor.
We report on VLBI measurements of supernova 2014C at several epochs between $t = 384$ and 1057 days after the explosion. SN 2014C was an unusual supernova that initially had Type Ib optical spectrum, but after $t = 130$ d it developed a Type IIn spec trum with prominent H$alpha$ lines, suggesting the onset of strong circumstellar interaction. Our first VLBI observation was at $t = 384$ d, and we find that the outer radius of SN 2014C was $(6.40 pm 0.26) times 10^{16}$ cm (for a distance of 15.1 Mpc), implying an average expansion velocity of $19300 pm 790$ kms up to that time. At our last epoch, SN 2014C was moderately resolved and shows an approximately circular outline but with an enhancement of the brightness on the W side. The outer radius of the radio emission at $t = 1057$ d is $(14.9 pm 0.6) times 10^{16}$ cm. We find that the expansion between $t = 384$ and 1057 d is well described by a constant velocity expansion with $v = 13600 pm 650$ kms. SN 2014C had clearly been substantially decelerated by $t = 384$ d. Our measurements are compatible with a scenario where the expanding shock impacted upon a shell of dense circumstellar material during the first year, as suggested by the observations at other wavelengths, but had progressed through the dense shell by the time of the VLBI observations.
We present optical observations of supernova SN 2014C, which underwent an unprecedented slow metamorphosis from H-poor type Ib to H-rich type IIn over the course of one year. The observed spectroscopic evolution is consistent with the supernova havin g exploded in a cavity before encountering a massive shell of the progenitor stars stripped hydrogen envelope. Possible origins for the circumstellar shell include a brief Wolf-Rayet fast wind phase that overtook a slower red supergiant wind, eruptive ejection, or confinement of circumstellar material by external influences of neighboring stars. An extended high velocity Halpha absorption feature seen in near-maximum light spectra implies that the progenitor star was not completely stripped of hydrogen at the time of core collapse. Archival pre-explosion Subaru Telescope Suprime-Cam and Hubble Space Telescope Wide Field Planetary Camera 2 images of the region obtained in 2009 show a coincident source that is most likely a compact massive star cluster in NGC 7331 that hosted the progenitor system. By comparing the emission properties of the source with stellar population models that incorporate interacting binary stars we estimate the age of the host cluster to be 30 - 300 Myr, and favor ages closer to 30 Myr in light of relatively strong Halpha emission. SN 2014C is the best-observed member of a class of core-collapse supernovae that fill the gap between events that interact strongly with dense, nearby environments immediately after explosion and those that never show signs of interaction. Better understanding of the frequency and nature of this intermediate population can contribute valuable information about the poorly understood final stages of stellar evolution.
We present our observations of SN 2010mb, a Type Ic SN lacking spectroscopic signatures of H and He. SN 2010mb has a slowly-declining light curve ($sim600,$days) that cannot be powered by $^{56}$Ni/$^{56}$Co radioactivity, the common energy source fo r Type Ic SNe. We detect signatures of interaction with hydrogen-free CSM including a blue quasi-continuum and, uniquely, narrow oxygen emission lines that require high densities ($sim10^9$cm$^{-3}$). From the observed spectra and light curve we estimate that the amount of material involved in the interaction was $sim3$M$_{odot}$. Our observations are in agreement with models of pulsational pair-instability SNe described in the literature.
We present and analyse spectra of the Type IIn supernova 1994W obtained between 18 and 203 days after explosion. During the luminous phase (first 100 d) the line profiles are composed of three major components: (i) narrow P-Cygni lines with the absor ption minima at -700 km/s; (ii) broad emission lines with BVZI ~4000 km/s; and (iii) broad, smooth wings, most apparent in H-alpha. These components are identified with an expanding circumstellar (CS) envelope, shocked cool gas in the forward post-shock region, and multiple Thomson scattering in the CS envelope, respectively. The absence of broad P-Cygni lines from the supernova is the result of the formation of an optically thick, cool, dense shell at the interface of the ejecta and the CS envelope. We model the supernova deceleration and Thomson scattering wings to recover the density, radial extent and Thomson optical depth of the CS envelope during the first month. We reproduce the light curve with a hydrodynamical model and find it to be powered by a combination of internal energy leakage after the explosion of an extended pre-supernova (~10^15 cm) and luminosity from circumstellar interaction. We recover the pre-explosion kinematics of the CS envelope: it is close to homologous expansion with outer velocity ~1100 km/s and a kinematic age of ~1.5 yr. The CS envelopes high mass and kinetic energy, combined with its small age, strongly suggest that the CS envelope was explosively ejected about 1.5 yr before the supernova explosion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا