ترغب بنشر مسار تعليمي؟ اضغط هنا

46 - T. Umeda , S. Ejiri , K. Kanaya 2013
We study scaling behavior of a chiral order parameter in the low density region, performing a simulation of two-flavor QCD with improved Wilson quarks. The scaling behavior of the chiral order parameter defined by a Ward-Takahashi identity agrees wit h the scaling function of the three-dimensional O(4) spin model at zero chemical potential. We extend the scaling study to finite density QCD. Applying the reweighting method and calculating derivatives of the chiral order parameter with respect to the chemical potential, the scaling properties of the chiral phase transition are discussed in the low density region. We moreover calculate the curvature of the phase boundary of the chiral phase transition in the temperature and chemical potential plane assuming the O(4) scaling relation.
88 - H. Saito , S. Ejiri , S. Aoki 2013
We study the phase structure of lattice QCD with heavy quarks at finite temperature and density by a histogram method. We determine the location of the critical point at which the first-order deconfining transition in the heavy-quark limit turns into a crossover at intermediate quark masses through a change of the shape of the histogram under variation of coupling parameters. We estimate the effect of the complex phase factor which causes the sign problem at finite density, and show that, in heavy-quark QCD, the effect is small around the critical point. We determine the critical surface in 2+1 flavor QCD in the heavy-quark region at all values of the chemical potential mu including mu=infty.
382 - T. Umeda , S. Aoki , S. Ejiri 2012
We study thermodynamic properties of 2+1 flavor QCD with improved Wilson quarks coupled with the RG improved Iwasaki glue, using the fixed scale approach. We present the results for the equation of state, renormalized Polyakov loop, and chiral condensate.
71 - T. Umeda , S. Aoki , S. Ejiri 2012
We study the equation of state in 2+1 flavor QCD with nonperturbatively improved Wilson quarks coupled with the RG-improved Iwasaki glue. We apply the $T$-integration method to nonperturbatively calculate the equation of state by the fixed-scale appr oach. With the fixed-scale approach, we can purely vary the temperature on a line of constant physics without changing the system size and renormalization constants. Unlike the conventional fixed-$N_t$ approach, it is easy to keep scaling violations small at low temperature in the fixed scale approach. We study 2+1 flavor QCD at light quark mass corresponding to $m_pi/m_rho simeq 0.63$, while the strange quark mass is chosen around the physical point. Although the light quark masses are heavier than the physical values yet, our equation of state is roughly consistent with recent results with highly improved staggered quarks at large $N_t$.
76 - K. Kanaya , S. Aoki , S. Ejiri 2010
The WHOT-QCD Collaboration is pushing forward lattice studies of QCD at finite temperatures and densities using improved Wilson quarks. We first present results on QCD at zero and finite densities with two flavors of degenerate quarks (N_F=2 QCD) ado pting the conventional fixed-Nt approach. We then report on the status of a study of N_F=2+1 QCD adopting a fixed-scale approach armed with the T-integration method which we have developed.
68 - Y. Maezawa , S. Aoki , S. Ejiri 2010
Screenings of the quark-gluon plasma in electric and magnetic sectors are studied on the basis of generalized Polyakov-line correlation functions in lattice QCD simulations with two flavors of improved Wilson quarks. Using the Euclidean-time reflecti on ($R$) and the charge conjugation ($Ca$), electric and magnetic screening masses are extracted in a gauge invariant manner. Long distance behavior of the standard Polyakov-line correlation in the quark-gluon plasma is found to be dictated by the magnetic screening. Also, ratio of the two screening masses agrees with that obtained from the dimensionally-reduced effective field theory and the ${cal N}=4$ supersymmetric Yang-Mills theory.
117 - Y. Maezawa , S. Aoki , S. Ejiri 2009
The free energy between a static quark and an antiquark is studied by using the color-singlet Polyakov-line correlation at finite temperature. We perform simulations on $32^3 times 12$, 10, 8, 6, 4 lattices in the high temperature phase with the RG-i mproved gluon action and 2+1 flavors of the clover-improved Wilson quark action. Since the simulations are based on the fixed scale approach that the temperature can be varied without changing the spatial volume and renormalization factor, it is possible to investigate temperature dependence of the heavy-quark free energy without any adjustment of the overall constant. We find that, the heavy-quark free energies at short distance converge to the heavy-quark potential evaluated from the Wilson-loop operator at zero temperature, in accordance with the expected insensitivity of short distance physics to the temperature. At long distance, the heavy-quark free energies approach to twice the single-quark free energies, implying that the interaction between heavy quarks is screened. The Debye screening mass obtained from the long range behavior of the heavy-quark free energy is compared with results of the thermal perturbation theory and those of $N_f=2$ and $N_f=0$ lattice simulations.
171 - S. Ejiri , Y. Maezawa , N. Ukita 2009
We study the equation of state at finite temperature and density in two-flavor QCD with the RG-improved gluon action and the clover-improved Wilson quark action on a $ 16^3 times 4$ lattice. Along the lines of constant physics at $m_{rm PS}/m_{rm V} = 0.65$ and 0.80, we compute the second and forth derivatives of the grand canonical partition function with respect to the quark chemical potential $mu_q = (mu_u+mu_d)/2$ and the isospin chemical potential $mu_I = (mu_u-mu_d)/2$ at vanishing chemical potentials, and study the behaviors of thermodynamic quantities at finite $mu_q$ using these derivatives for the case $mu_I=0$. In particular, we study density fluctuations at none-zero temperature and density by calculating the quark number and isospin susceptibilities and their derivatives with respect to $mu_q$. To suppress statistical fluctuations, we also examine new techniques applicable at low densities. We find a large enhancement in the fluctuation of quark number when the density increased near the pseudo-critical temperature, suggesting a critical point at finite $mu_q$ terminating the first order transition line between hadronic and quark gluon plasma phases. This result agrees with the previous results using staggered-type quark actions qualitatively. Furthermore, we study heavy-quark free energies and Debye screening masses at finite density by measuring the first and second derivatives of these quantities for various color channels of heavy quark-quark and quark-anti-quark pairs. The results suggest that, to the leading order of $mu_q$, the interaction between two quarks becomes stronger at finite densities, while that between quark and anti-quark becomes weaker.
108 - Y. Maezawa , S. Aoki , S. Ejiri 2009
The free energy between a static quark and an antiquark is studied by using the color-singlet Polyakov-line correlation at finite temperature in lattice QCD with 2+1 flavors of improved Wilson quarks. From the simulations on $32^3 times 12$, 10, 8, 6 , 4 lattices in the high temperature phase, based on the fixed scale approach, we find that, the heavy-quark free energies at short distance converge to the heavy-quark potential evaluated from the Wilson loop at zero temperature, in accordance with the expected insensitivity of short distance physics to the temperature. At long distance, the heavy-quark free energies approach to twice the single-quark free energies, implying that the interaction between heavy quarks is screened. The Debye screening mass obtained from the long range behavior of the free energy is compared with the results of thermal perturbation theory.
192 - Y. Maezawa , S. Aoki , S. Ejiri 2008
Screening properties of the quark gluon plasma are studied from Polyakov-loop correlation in lattice QCD simulations with two flavors of improved Wilson quarks at temperatures $T/Tpc simeq 1$--4 where $Tpc$ is the pseudocritical temperature. Using th e Euclidean-time reflection symmetry and the charge conjugation symmetry, we introduce various types of Polyakov-loop correlation functions and extract screening masses in magnetic and electric sectors. We find that the temperature dependence of the screening masses are well described by the weak coupling expansion. We also find that a ratio of the screening masses in the electric sector to the magnetic sector shows qualitative agreement with a prediction from the dimensionally-reduced effective field theory and the N=4 supersymmetric Yang-Mills theory at $1.3 < T/Tpc < 3$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا