ﻻ يوجد ملخص باللغة العربية
Screenings of the quark-gluon plasma in electric and magnetic sectors are studied on the basis of generalized Polyakov-line correlation functions in lattice QCD simulations with two flavors of improved Wilson quarks. Using the Euclidean-time reflection ($R$) and the charge conjugation ($Ca$), electric and magnetic screening masses are extracted in a gauge invariant manner. Long distance behavior of the standard Polyakov-line correlation in the quark-gluon plasma is found to be dictated by the magnetic screening. Also, ratio of the two screening masses agrees with that obtained from the dimensionally-reduced effective field theory and the ${cal N}=4$ supersymmetric Yang-Mills theory.
Screening properties of the quark gluon plasma are studied from Polyakov-loop correlation in lattice QCD simulations with two flavors of improved Wilson quarks at temperatures $T/Tpc simeq 1$--4 where $Tpc$ is the pseudocritical temperature. Using th
We investigate the real and imaginary chemical-potential dependence of pion and $rho$-meson screening masses in both the confinement and the deconfinement region by using two-flavor lattice QCD. The spatial meson correlators are calculated in the ima
We investigate chemical-potential (mu) dependence of static-quark free energies in both the real and imaginary mu regions, performing lattice QCD simulations at imaginary mu and extrapolating the results to the real mu region with analytic continuati
Two-color lattice QCD with N_f=4 staggered fermion degrees of freedom (no rooting trick is applied) with equal electric charge q is studied in a homogeneous magnetic background field B and at non-zero temperature T. In order to circumvent renormaliza
We address the interpretation of the Landau gauge gluon propagator at finite temperature as a massive type bosonic propagator. Using pure gauge SU(3) lattice simulations at a fixed lattice volume $sim(6.5fm)^3$, we compute the electric and magnetic f