ترغب بنشر مسار تعليمي؟ اضغط هنا

The X-ray binary, black hole candidate, and microquasar H1743-322 exhibited a series of X-ray outbursts between 2003 and 2008. We took optical/infrared (OIR) observations with the ESO/NTT telescope during 3 of these outbursts (2003, 2004, and 2008), to study its spectral energy distribution (SED). We detect rapid flares of duration ~5 mn in the high time-resolution IR lightcurve. We identify H and He emission lines in the IR spectra, coming from the accretion disk. The IR SED exhibits the spectral index typically associated with the X-ray high, soft state in our observations taken during the 2003 and 2004 outbursts, while the index changes to one that is typical of the X-ray low, hard state during the 2008 outburst. During this last outburst, we detected a change of slope in the NIR spectrum between the J and Ks bands, where the JH part is characteristic of an optically thick disk emission, while the HKs part is typical of optically thin synchrotron emission. Furthermore, the comparison of our IR data with radio and X-ray data shows that H1743-322 exhibits a faint jet both in radio and NIR domains. Finally, we suggest that the companion star is a late-type main sequence star located in the Galactic bulge. These OIR photometric and spectroscopic observations of the microquasar H1743-322, the first of this source to be published in a broad multiwavelength context, allow us to unambiguously identify two spectra of different origins in the OIR domain, evolving from optically thick thermal emission to optically thin synchrotron emission toward longer wavelengths. Comparing these OIR observations with other black hole candidates suggests that H1743-322 behaves like a radio-quiet and NIR-dim black hole in the low, hard state. This study will be useful when quantitatively comparing the overall contribution of the compact jet and accretion flow in the energy budget of microquasars.
Theoretical and observational work show that jets from AGN can trigger star formation. However, in the Milky Way the first -and so far- only clear case of relativistic jets inducing star formation has been found in the surroundings of the microquasar GRS 1915+105. Here we summarize the multiwavelength observations of two compact star formation IRAS sources axisymmetrically located and aligned with the position angle of the sub-arcsec relativistic jets from the stellar black hole binary GRS 1915+105 (Mirabel & Rodriguez 1994). The observations of these two star forming regions at centimeter (Rodriguez & Mirabel 1998), millimeter and infrared (Chaty et al. 2001) wavelengths had suggested -despite the large uncertainties in the distances a decade ago- that the jets from GRS 1915+105 are triggering along the radio jet axis the formation of massive stars in a radio lobe of bow shock structure. Recently, Reid et al.(2014) found that the jet source and the IRAS sources are at the same distance, enhancing the evidence for the physical association between the jets from GRS 1915+105 and star formation in the IRAS sources. We conclude that as jets from AGN, jets from microquasars can trigger the formation of massive stars, but at distances of a few tens of parsecs. Although star formation induced by microquasar jets may not be statistically significant in the Milky Way, jets from stellar black holes may have been important to trigger star formation during the re-ionization epoch of the universe (Mirabel et al. 2011). Because of the relative proximity of GRS 1915+105 and the associated star forming regions, they may serve as a nearby laboratory to gain insight into the physics of jet-trigger star formation elsewhere in the universe.
While the sources of X-ray and radio emission in the different states of low-mass X-ray binaries are relatively well understood, the origin of the near-infrared (NIR) and optical emission is more often debated. It is likely that the NIR/optical flux originates from an amalgam of different emission regions, because it occurs at the intersecting wavelengths of multiple processes. We aim to identify the NIR/optical emission region(s) of one such low-mass X-ray binary and black hole candidate, XTE J1650-500, via photometric, timing, and spectral analyses. We present unique NIR/optical images and spectra, obtained with the ESO-New Technology Telescope, during the peak of the 2001 outburst of XTE J1650-500. The data suggest that the NIR/optical flux is due to a combination of emission mechanisms including a significant contribution from X-ray reprocessing and, at early times in the hard state, a relativistic jet that is NIR/radio dim compared to similar sources.The jet of XTE J1650-500 is relatively weak compared to that of other black hole low-mass X-ray binaries, possibly because we observe as it is being turned off or quenched at the state transition. While there are several outliers to the radio--X-ray correlation of the hard state of low-mass X-ray binaries, XTE J1650-500 is the first example of an outlier to the NIR/optical--X-ray correlation.
The near infrared (nIR)/optical counterparts of low mass X-ray binaries (LMXBs) are often observationally dim and reside in high source density fields which make their identification problematic; however, without such a counterpart identification we are unable to investigate many of the properties of LMXB systems. Here, in the context of a larger identification campaign, we examine the fields of four LMXB systems near the Galactic centre, in a bid to identify nIR/optical counterparts to the previously detected X-ray point sources. We obtain nIR/optical images of the fields with the ESO - New Technology Telescope and apply standard photometric and astrometric calibrations; these data are supplemented by Spitzer-GLIMPSE catalog data. On the basis of positional coincidence with the arcsecond accurate X-ray positions, we identify unambiguous counterpart candidates for XTE J1637-498, IGR J17379-3747, IGR J17585-3057 and GX 9+1. We propose tentative nIR counterparts of four LMXBs which require further investigation to confirm their associations to the X-ray sources.
530 - L. J. Pellizza 2010
Context. One of the most striking discoveries of the INTEGRAL observatory is the existence of a previously unknown population of X-ray sources in the inner arms of the Galaxy. The investigations of the optical/NIR counterparts of some of them have pr ovided evidence that they are highly absorbed high mass X-ray binaries hosting supergiants. Aims. We aim to identify the optical/NIR counterpart of one of the newly discovered INTEGRAL sources, IGR J16283-4838, and determine the nature of this system. Methods. We present optical and NIR observations of the field of IGR J16283-4838, and use the astrometry and photometry of the sources within it to identify its counterpart. We obtain its NIR spectrum, and its optical/NIR spectral energy distribution by means of broadband photometry. We search for the intrinsic polarization of its light, and its short and long-term photometric variability. Results. We demonstrate that this source is a highly absorbed HMXB located beyond the Galactic center, and that it may be surrounded by a variable circumstellar medium.
To date, mid-infrared properties of Galactic black hole binaries have barely been investigated in the framework of multi-wavelength campaigns. Yet, studies in this spectral domain are crucial to get complementary information on the presence of dust a nd/or on the physical processes such as dust heating and thermal bremsstrahlung. Here, we report a long-term multi-wavelength study of the microquasar GRS 1915+105. On the one hand, we aimed at understanding the origins of the mid-infrared emission, and on the other hand, at searching for correlation with the high-energy and/or radio activities. We observed the source at several epochs between 2004 and 2006 with the photometer IRAC and spectrometer IRS, both mounted on the Spitzer Space Telescope. When available, we completed our set of data with quasi-simultaneous RXTE and INTEGRAL high-energy and/or Ryle radio observations from public archives. We then studied the mid-infrared environment and activities of GRS 1915+105 through spectral analysis and broad band fitting of its radio to X-ray spectral energy distributions. We detected polycyclic aromatic hydrocarbon molecules in all but one IRS spectra of GRS 1915+105 which unambiguously proves the presence of a dust component, likely photoionised by the high-energy emission. We also argue that this dust is distributed in a disc-like structure heated by the companion star, as observed in some Herbig Ae/Be and isolated cool giant stars. Moreover, we show that some of the soft X-ray emission emanating from the inner regions of the accretion disc is reprocessed and thermalised in the outer part. This leads to a mid-infrared excess that is very likely correlated to the soft X-ray emission. We exclude thermal bremsstrahlung as contributing significantly in this spectral domain.
We report preliminary results of mid-infrared (MIR) and X-ray observations of GRS 1915+105 that we carried out between 2004 October 2 and 2006 June 5. Our main goals were to study its variability, to detect the presence of dust, and to investigate th e possible links between MIR and X-ray emissions. We performed photometric and spectroscopic observations of GRS 1915+105, using the IRAC photometer and the IRS spectrometer mounted on the Spitzer Space Telescope. We completed our set of MIR data with quasi-simultaneous high-energy data obtained with RXTE and INTEGRAL. In the hard state, we detect PAH emission features in the MIR spectrum of GRS 1915+105, which prove the presence of dust in the system. The dust is confirmed by the detection in the hard state of a warm MIR excess in the broadband spectral energy distribution of GRS 1915 105. This excess cannot be explained by the MIR synchrotron emission from the compact jets as GRS 1915+105 was not detected at 15 GHz with the Ryle telescope. We also show that the MIR emission of GRS 1915+105 is strongly variable; it is likely correlated to the soft X-ray emission as it increases in the soft state. We suggest that, beside the dust emission, part of the MIR excess in the soft state is non-thermal, and could be due either to free-free emission from an X-ray driven wind or X-ray reprocessing in the outer part of the accretion disc.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا