ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared study of H1743-322 in outburst: a radio-quiet and NIR-dim microquasar

141   0   0.0 ( 0 )
 نشر من قبل Sylvain Chaty
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The X-ray binary, black hole candidate, and microquasar H1743-322 exhibited a series of X-ray outbursts between 2003 and 2008. We took optical/infrared (OIR) observations with the ESO/NTT telescope during 3 of these outbursts (2003, 2004, and 2008), to study its spectral energy distribution (SED). We detect rapid flares of duration ~5 mn in the high time-resolution IR lightcurve. We identify H and He emission lines in the IR spectra, coming from the accretion disk. The IR SED exhibits the spectral index typically associated with the X-ray high, soft state in our observations taken during the 2003 and 2004 outbursts, while the index changes to one that is typical of the X-ray low, hard state during the 2008 outburst. During this last outburst, we detected a change of slope in the NIR spectrum between the J and Ks bands, where the JH part is characteristic of an optically thick disk emission, while the HKs part is typical of optically thin synchrotron emission. Furthermore, the comparison of our IR data with radio and X-ray data shows that H1743-322 exhibits a faint jet both in radio and NIR domains. Finally, we suggest that the companion star is a late-type main sequence star located in the Galactic bulge. These OIR photometric and spectroscopic observations of the microquasar H1743-322, the first of this source to be published in a broad multiwavelength context, allow us to unambiguously identify two spectra of different origins in the OIR domain, evolving from optically thick thermal emission to optically thin synchrotron emission toward longer wavelengths. Comparing these OIR observations with other black hole candidates suggests that H1743-322 behaves like a radio-quiet and NIR-dim black hole in the low, hard state. This study will be useful when quantitatively comparing the overall contribution of the compact jet and accretion flow in the energy budget of microquasars.



قيم البحث

اقرأ أيضاً

207 - Fiamma Capitanio 2009
We report on a campaign of X-ray and soft gamma-ray observations of the black hole candidate H 1743-322 (also named IGR J17464-3213), performed with the RXTE, INTEGRAL and Swift satellites. The source was observed during a short outburst between 2008 October 03 and 2008 November 16. The evolution of the hardness-intensity diagram throughout the outburst is peculiar, in that it does not follow the canonical pattern through all the spectral states (the so called q-track pattern) seen during the outburst of black-hole transients. On the contrary, the source only makes a transition from the Hard State to the Hard-Intermediate State. After this transition, the source decreases in luminosity and its spectrum hardens again. This behaviour is confirmed both by spectral and timing analysis. This kind of outburst has been rarely observed before in a transient black hole candidate.
We observed the Galactic black hole candidate H1743-322 with Suzaku for approximately 32 ksec, while the source was in a low/hard state during its 2008 outburst. We collected and analyzed the data with the HXD/PIN, HXD/GSO and XIS cameras spanning th e energy range from 0.7-200 keV. Fits to the spectra with simple models fail to detect narrow Fe XXV and Fe XXVI absorption lines, with 90% confidence upper limits of 3.5 eV and 2.5 eV on the equivalent width, respectively. These limits are commensurate with those in the very high state, but are well below the equivalent widths of lines detected in the high/soft state, suggesting that disk winds are partially state-dependent. We discuss these results in the context of previous detections of ionized Fe absorption lines in H1743-322 and connections to winds and jets in accreting systems. Additionally, we report the possible detection of disk reflection features, including an Fe K emission line.
In recent years, the black hole candidate X-ray binary system H1743-322 has undergone outbursts and it has been observed with X-ray and radio telescopes. We present 1.3 GHz MeerKAT radio data from the ThunderKAT Large Survey Project on radio transien ts for the 2018 outburst of H1743-322. We obtain seven detections from a weekly monitoring programme and use publicly available Swift X-ray Telescope and MAXI data to investigate the radio/X-ray correlation of H1743-322 for this outburst. We compare the 2018 outburst with those reported in the literature for this system and find that the X-ray outburst reported is similar to previously reported `hard-only outbursts. As in previous outbursts, H1743-322 follows the `radio-quiet correlation in the radio/X-ray plane for black hole X-ray binaries, and the radio spectral index throughout the outburst is consistent with the `radio-quiet population.
We present an intensive radio and X-ray monitoring campaign on the 2009 outburst of the Galactic black hole candidate X-ray binary H1743-322. With the high angular resolution of the Very Long Baseline Array, we resolve the jet ejection event and meas ure the proper motions of the jet ejecta relative to the position of the compact core jets detected at the beginning of the outburst. This allows us to accurately couple the moment when the jet ejection event occurred with X-ray spectral and timing signatures. We find that X-ray timing signatures are the best diagnostic of the jet ejection event in this outburst, which occurred as the X-ray variability began to decrease and the Type C quasi-periodic oscillations disappeared from the X-ray power density spectrum. However, this sequence of events does not appear to be replicated in all black hole X-ray binary outbursts, even within an individual source. In our observations of H1743-322, the ejection was contemporaneous with a quenching of the radio emission, prior to the start of the major radio flare. This contradicts previous assumptions that the onset of the radio flare marks the moment of ejection. The jet speed appears to vary between outbursts, with a possible positive correlation with outburst luminosity. The compact core radio jet reactivated on transition to the hard intermediate state at the end of the outburst, and not when the source reached the low hard spectral state. Comparison with the known near-infrared behaviour of the compact jets suggests a gradual evolution of the compact jet power over a few days near the beginning and end of an outburst.
Compact radio jets are ubiquitous in stellar-mass black-hole binaries in their hard spectral state. Empirical relations between the radio and narrow-band X-ray fluxes have been used to understand the connection between their accretion discs and jets. However, a narrow-band (e.g., 1--10 or 3--9 keV) X-ray flux can be a poor proxy for either the bolometric luminosity or the mass accretion rate. Here, we study correlations between the radio and unabsorbed broad-band X-ray fluxes, the latter providing good estimates of the bolometric flux. We consider GX 339--4, the benchmark object for the main branch of the correlation, and H1743--322, the first source found to be an outlier of the correlation. The obtained power-law dependencies of the radio flux on the bolometric flux have significantly different indices from those found for the narrow X-ray bands. Also, the radio/bolometric flux correlations for the rise of the outbursts are found to be significantly different from those for the outburst decline. This points to a possible existence of a jet hysteresis in the radio/X-ray source evolution, in addition to that seen in the hardness/flux diagram of low-mass X-ray binaries. The correlation during the rise of the outbursts is similar for both GX 339--4 and H1743--322. The correlation for the decline of the outbursts for H1743--322 lies below that of GX 339--4 at intermediate X-ray fluxes, whereas it approaches the standard correlation at lower X-ray luminosities. We also compare these correlations to those for the high-mass X-ray binaries Cyg X-1 and Cyg X-3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا