ترغب بنشر مسار تعليمي؟ اضغط هنا

40 - S. Nayak , S. Chakraverty 2015
This paper deals with uncertain parabolic fluid flow problem where the uncertainty occurs due to the initial conditions and parameters involved in the system. Uncertain values are considered as fuzzy and these are handled through a recently developed method. Here the concepts of fuzzy numbers are combined with Finite Difference Method (FDM) and then Fuzzy Finite Difference Method (FFDM) has been proposed. The proposed FFDM has been used to solve the fluid flow problem bounded by two parallel plates. Finally sensitivity of the fuzzy parameters has also been analysed.
We investigated the electronic and magnetic properties of fully oxidized BaFeO3 thin films, which show ferromagnetic-insulating properties with cubic crystal structure, by hard x-ray photoemission spectroscopy (HAXPES), x-ray absorption spectroscopy (XAS) and soft x-ray magnetic circular dichroism (XMCD). We analyzed the results with configuration-interaction (CI) cluster-model calculations for Fe4+, which showed good agreement with the experimental results. We also studied SrFeO3 thin films, which have an Fe4+ ion helical magnetism in cubic crystal structure, but are metallic at all temperatures. We found that BaFeO3 thin films are insulating with large magnetization (2.1muB/formula unit) under ~ 1 T, using valence-band HAXPES and Fe 2p XMCD, which is consistent with the previously reported resistivity and magnetization measurements. Although Fe 2p core-level HAXPES and Fe 2p XAS spectra of BaFeO3 and SrFeO3 thin films are quite similar, we compared the insulating BaFeO3 to metallic SrFeO3 thin films with valence-band HAXPES. The CI cluster-model analysis indicates that the ground state of BaFeO3 is dominated by d5L (L: ligand hole) configuration due to the negative charge transfer energy, and that the band gap has significant O 2p character. We revealed that the differences of the electronic and magnetic properties between BaFeO3 and SrFeO3 arise from the differences in their lattice constants, through affecting the strength of hybridization and bandwidth.
Naturally occurring spin-valve-type magnetoresistance (SVMR), recently observed in Sr2FeMoO6 samples, suggests the possibility of decoupling the maximal resistance from the coercivity of the sample. Here we present the evidence that SVMR can be engin eered in specifically designed and fabricated core-shell nanoparticle systems, realized here in terms of soft magnetic Fe3O4 as the core and hard magnetic insulator CoFe2O4 as the shell materials. We show that this provides a magnetically switchable tunnel barrier that controls the magnetoresistance of the system, instead of the magnetic properties of the magnetic grain material, Fe3O4, and thus establishing the feasibility of engineered SVMR structures.
We report on atomic ordering of B-site transition-metals and magnetic properties of epitaxial La2CrFeO6 double-perovskite films grown by pulsed-laser deposition under various conditions. The highest ordered sample exhibited a fraction of antisite-dis order of only 0.05 and a saturation magnetization of ~2mu_{B} per formula unit at 5 K. The result is consistent with the antiferromagnetic ordering of local spin moment (3d^{3}_{downarrow}3d^{5}_{uparrow}; S = -3/2+5/2 = 1). Therefore, the magnetic ground state of La2CrFeO6 double-perovskite that has been long debate is unambiguously revealed to be ferrimagnetic. Our results present a wide opportunity to explore novel magnetic properties of binary transition-metal perovskites upon epitaxial stabilization of the ordered phase.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا