ترغب بنشر مسار تعليمي؟ اضغط هنا

121 - S. Marino , S. Casassus , S. Perez 2015
The formation of planetesimals requires that primordial dust grains grow from micron- to km-sized bodies. Dust traps caused by gas pressure maxima have been proposed as regions where grains can concentrate and grow fast enough to form planetesimals, before radially migrating onto the star. We report new VLA Ka & Ku observations of the protoplanetary disk around the Herbig Ae/Be star MWC 758. The Ka image shows a compact emission region in the outer disk indicating a strong concentration of big dust grains. Tracing smaller grains, archival ALMA data in band 7 continuum shows extended disk emission with an intensity maximum to the north-west of the central star, which matches the VLA clump position. The compactness of the Ka emission is expected in the context of dust trapping, as big grains are trapped more easily than smaller grains in gas pressure maxima. We develop a non-axisymmetric parametric model inspired by a steady state vortex solution with parameters adequately selected to reproduce the observations, including the spectral energy distribution. Finally, we compare the radio continuum with SPHERE scattered light data. The ALMA continuum spatially coincides with a spiral-like feature seen in scattered light, while the VLA clump is offset from the scattered light maximum. Moreover, the ALMA map shows a decrement that matches a region devoid of scattered polarised emission. Continuum observations at a different wavelength are necessary to conclude if the VLA-ALMA difference is an opacity or a real dust segregation.
The disk around HD 142527 attracts a lot of attention, amongst others because of its resolved (sub) mm dust continuum that is concentrated into a horseshoe-shape towards the north of the star. In this manuscript we present spatially resolved ALMA det ections of the HCN J=4-3 and CS J=7-6 emission lines. These lines give us a view deeper into the disk compared to the (optically thicker) CO isotopes. This is the first detection of CS J=7-6 coming from a protoplanetary disk. Both emission lines are azimuthally asymmetric and are suppressed under the horseshoe-shaped continuum emission peak. A possible mechanism to explain the decrease under the horseshoe-shaped continuum is the increased opacity coming from the higher dust concentration at the continuum peak. Lower {gr dust and/or gas} temperatures and an optically thick radio-continuum reduce line emission by freeze-out and shielding of emission from the far side of the disk.
47 - S. Casassus 2012
The vestiges of planet formation have been observed in debris disks harboring young and massive gaseous giants. The process of giant planet formation is terminated by the dissipation of gas in the protoplanetary disk. The gas-rich disk around HD14252 7 features a small inner disk, a large gap from sim10 to sim140AU, and a massive outer disk extending out to sim300AU. The gap could have been carved-out by a giant planet. We have imaged the outer regions of this gap using the adaptive-optics camera NICI on Gemini South. Our images reveal that the disk is dynamically perturbed. The outer boundary of the roughly elliptical gap appears to be composed of several segments of spiral arms. The stellar position is offset by 0.17+-0.02 from the centroid of the cavity, consistent with earlier imaging at coarser resolutions. These transient morphological features are expected in the context of disk evolution in the presence of a perturbing body located inside the cavity. We perform hydro-dynamical simulations of the dynamical clearing of a gap in a disk. A 10Mjup body in a circular orbit at r = 90AU, perturbs the whole disks, even after thousands of orbits. By then the model disk has an eccentric and irregular cavity, flanked by tightly wound spiral arms, but it is still evolving far from steady state. A particular transient configuration that is a qualitative match to HD142527 is seen at 1.7Myr.
47 - C. Dickinson 2010
Lynds dark cloud LDN1622 represents one of the best examples of anomalous dust emission, possibly originating from small spinning dust grains. We present Cosmic Background Imager (CBI) 31 GHz data of LDN1621, a diffuse dark cloud to the north of LDN1 622 in a region known as Orion East. A broken ring with diameter gapprox 20 arcmin of diffuse emission is detected at 31 GHz, at approx 20-30 mJy beam$^{-1}$ with an angular resolution of approx 5 arcmin. The ring-like structure is highly correlated with Far Infra-Red emission at $12-100 mu$m with correlation coefficients of r approx 0.7-0.8, significant at $sim10sigma$. Multi-frequency data are used to place constraints on other components of emission that could be contributing to the 31 GHz flux. An analysis of the GB6 survey maps at 4.85 GHz yields a $3sigma$ upper limit on free-free emission of 7.2 mJy beam$^{-1}$ ($la 30 per cent of the observed flux) at the CBI resolution. The bulk of the 31 GHz flux therefore appears to be mostly due to dust radiation. Aperture photometry, at an angular resolution of 13 arcmin and with an aperture of diameter 30 arcmin, allowed the use of IRAS maps and the {it WMAP} 5-year W-band map at 93.5 GHz. A single modified blackbody model was fitted to the data to estimate the contribution from thermal dust, which amounts to $sim$ 10 per cent at 31 GHz. In this model, an excess of 1.52pm 0.66 Jy (2.3sigma) is seen at 31 GHz. Future high frequency $sim$ 100-1000 GHz data, such as those from the {it Planck} satellite, are required to accurately determine the thermal dust contribution at 31 GHz. Correlations with the IRAS $100 mu$m gave a coupling coefficient of $18.1pm4.4 mu$K (MJy/sr)$^{-1}$, consistent with the values found for LDN1622.
42 - S. Casassus 2007
We report a centimetre-wave (cm-wave, 5-31GHz) excess over free-free emission in PNe. Accurate 31 and 250GHz measurements show that the 31GHz flux densities in our sample are systematically higher than the level of optically thin free-free continuum extrapolated from 250GHz. The 31GHz excess is observed, within one standard deviation, in all 18 PNe with reliable 31 and 250GHz data, and is significant in 9 PNe. The only exception is the peculiar object M2-9, whose radio spectrum is that of an optically thick stellar wind. On average the fraction of non-free-free emission represents 51% of the total flux density at 31GHz, with a scatter of 11%. The average 31-250GHz spectral index of our sample is <alpha_{31}^{250}> = -0.43+-0.03 (in flux density, with a scatter of 0.14). The 31--250 GHz drop is reminiscent of the anomalous foreground observed in the diffuse ISM by CMB anisotropy experiments. The 5--31 GHz spectral indices are consistent with both flat spectra and spinning dust emissivities, given the 10% calibration uncertainty of the comparison 5GHz data. But a detailed study of the objects with the largest cm-excess, including the low frequency data available in the literature, shows that present spinning dust models cannot alone explain the cm-excess in PNe. Although we have no definitive interpretation of our data, the least implausible explanation involves a synchrotron component absorbed by a cold nebular screen. We give flux densities for 37 objects at 31GHz, and for 26 objects at 250GHz.
73 - S. Casassus 2007
This paper has been withdrawn by the author(s), as it is superseded by 0708.2385.
The 12C/13C isotope ratio in the interstellar medium (ISM), and its evolution with time, is an important tracer of stellar yields. Spatial variations of this ratio can be used to study mixing in the ISM. We want to determine this ratio and its spatia l variations in the local ISM from CH+ absorption lines in the optical towards early-type stars. The aim is to determine the average value for the local ISM and study possible spatial variations. We observed a large number of early-type stars with Feros to extend the sample of suitable target stars for CH+ isotope studies. The best suited targets were observed with Uves with higher signal-to-noise ratio and spectral resolution to determine the isotope ratio from the interstellar CH+ lines. This study significantly expands the number of 13CH+ detections. We find an average ratio of <R> = 76.27 +- 1.94 or, for f = 1/R, <f> = (120.46 +- 3.02) 10^{-4}. The scatter in f is 6.3 sigma(<f>). This findings strengthens the case for chemical inhomogeneity in the local ISM, with important implications for the mixing in the ISM. Given the large scatter, the present-day value in the ISM is not significantly larger than the solar value, which corresponds to the local value 4.5 Gyr ago.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا