ترغب بنشر مسار تعليمي؟ اضغط هنا

IR-correlated 31 GHz radio emission from Orion East

48   0   0.0 ( 0 )
 نشر من قبل Clive Dickinson PhD
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Dickinson




اسأل ChatGPT حول البحث

Lynds dark cloud LDN1622 represents one of the best examples of anomalous dust emission, possibly originating from small spinning dust grains. We present Cosmic Background Imager (CBI) 31 GHz data of LDN1621, a diffuse dark cloud to the north of LDN1622 in a region known as Orion East. A broken ring with diameter gapprox 20 arcmin of diffuse emission is detected at 31 GHz, at approx 20-30 mJy beam$^{-1}$ with an angular resolution of approx 5 arcmin. The ring-like structure is highly correlated with Far Infra-Red emission at $12-100 mu$m with correlation coefficients of r approx 0.7-0.8, significant at $sim10sigma$. Multi-frequency data are used to place constraints on other components of emission that could be contributing to the 31 GHz flux. An analysis of the GB6 survey maps at 4.85 GHz yields a $3sigma$ upper limit on free-free emission of 7.2 mJy beam$^{-1}$ ($la 30 per cent of the observed flux) at the CBI resolution. The bulk of the 31 GHz flux therefore appears to be mostly due to dust radiation. Aperture photometry, at an angular resolution of 13 arcmin and with an aperture of diameter 30 arcmin, allowed the use of IRAS maps and the {it WMAP} 5-year W-band map at 93.5 GHz. A single modified blackbody model was fitted to the data to estimate the contribution from thermal dust, which amounts to $sim$ 10 per cent at 31 GHz. In this model, an excess of 1.52pm 0.66 Jy (2.3sigma) is seen at 31 GHz. Future high frequency $sim$ 100-1000 GHz data, such as those from the {it Planck} satellite, are required to accurately determine the thermal dust contribution at 31 GHz. Correlations with the IRAS $100 mu$m gave a coupling coefficient of $18.1pm4.4 mu$K (MJy/sr)$^{-1}$, consistent with the values found for LDN1622.

قيم البحث

اقرأ أيضاً

Radio relics are patches of diffuse synchrotron radio emission that trace shock waves. Relics are thought to form when intra-cluster medium electrons are accelerated by cluster merger induced shock waves through the diffusive shock acceleration mecha nism. In this paper, we present observations spanning 150 MHz to 30 GHz of the `Sausage and `Toothbrush relics from the Giant Metrewave and Westerbork telescopes, the Karl G. Jansky Very Large Array, the Effelsberg telescope, the Arcminute Microkelvin Imager and Combined Array for Research in Millimeter-wave Astronomy. We detect both relics at 30 GHz, where the previous highest frequency detection was at 16 GHz. The integrated radio spectra of both sources clearly steepen above 2 GHz, at the >6$sigma$ significance level, supports the spectral steepening previously found in the `Sausage and the Abell 2256 relic. Our results challenge the widely adopted simple formation mechanism of radio relics and suggest more complicated models have to be developed that, for example, involve re-acceleration of aged seed electrons.
The Andromeda galaxy is the best-known large galaxy besides our own Milky Way. Several images and studies exist at all wavelengths from radio to hard X-ray. Nevertheless, only a few observations are available in the microwave range where its average radio emission reaches the minimum. In this paper, we want to study the radio morphology of the galaxy, decouple thermal from nonthermal emission, and extract the star formation rate. We also aim to derive a complete catalog of radio sources for the mapped patch of sky. We observed the Andromeda galaxy with the Sardinia Radio Telescope at 6.6 GHz with very high sensitivity and angular resolution, and an unprecedented sky coverage. Using new 6.6 GHz data and Effelsberg radio telescope ancillary data, we confirm that, globally, the spectral index is $sim 0.7-0.8$, while in the star forming regions it decreases to $sim 0.5$. By disentangling (gas) thermal and nonthermal emission, we find that at 6.6 GHz, thermal emission follows the distribution of HII regions around the ring. Nonthermal emission within the ring appears smoother and more uniform than thermal emission because of diffusion of the cosmic ray electrons away from their birthplaces. This causes the magnetic fields to appear almost constant in intensity. Furthermore, we calculated a map of the star formation rate based on the map of thermal emission. Integrating within a radius of $R_{max}=15$ kpc, we obtained a total star formation rate of $0.19 pm 0.01$ $M_{odot}$/yr in agreement with previous results in the literature. Finally, we correlated our radio data with infrared images of the Andromeda galaxy. We find an unexpectedly high correlation between nonthermal and mid-infrared data in the central region, with a correlation parameter $r=0.93$.
We have measured continuum flux densities of a high-mass protostar candidate, a radio source I in the Orion KL region (Orion Source I) using the Atacama Large Millimeter/Submillimeter Array (ALMA) at band 8 with an angular resolution of 0.1. The cont inuum emission at 430, 460, and 490 GHz associated with Source I shows an elongated structure along the northwest-southeast direction perpendicular to the so-called low-velocity bipolar outflow. The deconvolved size of the continuum source, 90 au times 20 au, is consistent with those reported previously at other millimeter/submillimeter wavelength. The flux density can be well fitted to the optically thick black-body spectral energy distribution (SED), and the brightness temperature is evaluated to be 700-800 K. It is much lower than that in the case of proton-electron or H- free-free radiations. Our data are consistent with the latest ALMA results by Plambeck & Wright (2016), in which the continuum emission have been proposed to arise from the edge-on circumstellar disk via thermal dust emission, unless the continuum source consists of an unresolved structure with the smaller beam filling factor.
Our current understanding of radio-loud AGN comes predominantly from studies at frequencies of 5 GHz and below. With the recent completion of the Australia Telescope 20 GHz (AT20G) survey, we can now gain insight into the high-frequency radio propert ies of AGN. This paper presents supplementary information on the AT20G sources in the form of optical counterparts and redshifts. Optical counterparts were identified using the SuperCOSMOS database and redshifts were found from either the 6dF Galaxy survey or the literature. We also report 144 new redshifts. For AT20G sources outside the Galactic plane, 78.5% have optical identifications and 30.9% have redshift information. The optical identification rate also increases with increasing flux density. Targets which had optical spectra available were examined to obtain a spectral classification. There appear to be two distinct AT20G populations; the high luminosity quasars that are generally associated with point-source optical counterparts and exhibit strong emission lines in the optical spectrum, and the lower luminosity radio galaxies that are generally associated with passive galaxies in both the optical images and spectroscopic properties. It is suggested that these different populations can be associated with different accretion modes (cold-mode or hot-mode). We find that the cold-mode sources have a steeper spectral index and produce more luminous radio lobes, but generally reside in smaller host galaxies than their hot-mode counterparts. This can be attributed to the fact that they are accreting material more efficiently. Lastly, we compare the AT20G survey with the S-cubed semi-empirical (S3-SEX) models and conclude that the S3-SEX models need refining to correctly model the compact cores of AGN. The AT20G survey provides the ideal sample to do this.
We present deep 15.7-GHz observations made with the Arcminute Microkelvin Imager Large Array in two fields previously observed as part of the Tenth Cambridge (10C) survey. These observations allow the source counts to be calculated down to 0.1 mJy, a factor of five deeper than achieved by the 10C survey. The new source counts are consistent with the extrapolated fit to the 10C source count, and display no evidence for either steepening or flattening of the counts. There is thus no evidence for the emergence of a significant new population of sources (e.g. starforming) at 15.7 GHz flux densities above 0.1 mJy, the flux density level at which we expect starforming galaxies to begin to contribute. Comparisons with the de Zotti et al. model and the SKADS Simulated Sky show that they both underestimate the observed number of sources by a factor of two at this flux density level. We suggest that this is due to the flat-spectrum cores of radio galaxies contributing more significantly to the counts than predicted by the models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا