ترغب بنشر مسار تعليمي؟ اضغط هنا

The most numerous source class that emerged from the H.E.S.S. Galactic Plane Survey are Pulsar Wind Nebulae (PWNe). The 2013 reanalysis of this survey, undertaken after almost 10 years of observations, provides us with the most sensitive and most com plete census of gamma-ray PWNe to date. In addition to a uniform analysis of spectral and morphological parameters, for the first time also flux upper limits for energetic young pulsars were extracted from the data. We present a discussion of the correlation between energetic pulsars and TeV objects, and their respective properties. We will put the results in context with the current theoretical understanding of PWNe and evaluate the plausibility of previously non-established PWN candidates.
Very-high-energy (VHE, E>100 GeV) gamma-rays provide a unique view of the non-thermal universe, tracing the most violent and energetic phenomena at work inside our Galaxy and beyond. The latest results of the H.E.S.S. Galactic Plane Survey (HGPS) und ertaken by the High Energy Stereoscopic System (H.E.S.S.), an array of four imaging atmospheric Cherenkov telescopes located in Namibia, are described here. The HGPS aims at the detection of cosmic accelerators with environments suitable for the production of photons at the highest energies and has led to the discovery of an unexpectedly large and diverse population of over 60 sources of TeV gamma rays within its current range of l = 250 to 65 degrees in longitude and |b|<3.5 degrees in latitude. The data set of the HGPS comprises 2800 hours of high-quality data, taken in the years 2004 to 2013. The sensitivity for the detection of point-like sources, assuming a power-law spectrum with a spectral index of 2.3 at a statistical significance of 5 sigma, is now at the level of 2% Crab or better in the core HGPS region. The latest maps of the inner Galaxy at TeV energies are shown alongside an introduction to the first H.E.S.S. Galactic Plane Survey catalog. Finally, in addition to an overview of the H.E.S.S. Galactic source population a few remarkable, recently discovered sources will be highlighted.
The H.E.S.S. Galactic Plane Survey (HGPS), the first comprehensive survey of the inner Galaxy at TeV energies, has led to the discovery of an unexpectedly large and diverse population of over 60 sources of TeV gamma rays within its current range of l = 250 to 65 degrees in longitude and |b| < 3.5 degrees in latitude. The data set of the HGPS comprises 2800 hours of high-quality data, taken in the years 2004 to 2013. The sensitivity for the detection of point-like sources is at the level of 2% Crab or better in the HGPS region. The population of TeV gamma-ray emitters is dominated by the pulsar wind nebula and supernova remnant source classes, although nearly a third of the sources remain unidentified or ambiguous. We are presenting the latest HGPS significance and sensitivity maps, as well as a work on the HGPS source catalog, based on a uniform re-analysis of the full data set collected in the last decade. We will also give a brief overview of the H.E.S.S. Galactic source population.
Motivated by recent detections of pulsar wind nebulae in very-high-energy (VHE) gamma rays, a systematic search for VHE gamma-ray sources associated with energetic pulsars was performed, using data obtained with the H.E.S.S. (High Energy Stereoscopic System) instrument. The search for VHE gamma-ray sources near the pulsar PSR J1718-3825 revealed the new VHE gamma-ray source HESS J1718-385. We report on the results from the HESS data analysis of this source and on possible associations with the pulsar and at other wavelengths. We investigate the energy spectrum of HESS J1718-385 that shows a clear peak. This is only the second time a VHE gamma-ray spectral maximum from a cosmic source was observed, the first being the Vela X pulsar wind nebula.
In the very-high-energy (VHE) gamma-ray wave band, pulsar wind nebulae (PWNe) represent to date the most populous class of Galactic sources. Nevertheless, the details of the energy conversion mechanisms in the vicinity of pulsars are not well underst ood, nor is it known which pulsars are able to drive PWNe and emit high-energy radiation. In this paper we present a systematic study of a connection between pulsars and VHE gamma-ray sources based on a deep survey of the inner Galactic plane conducted with the High Energy Stereoscopic System (H.E.S.S.). We find clear evidence that pulsars with large spin-down energy flux are associated with VHE gamma-ray sources. This implies that these pulsars emit on the order of 1% of their spin-down energy as TeV gamma-rays.
The source HESS J1809-193 was discovered in 2006 in data of the Galactic Plane survey, followed by several re-observations. It shows a hard gamma-ray spectrum and the emission is clearly extended. Its vicinity to PSR J1809-1917, a high spin-down lumi nosity pulsar powerful enough to drive the observed gamma-ray emission, makes it a plausible candidate for a TeV Pulsar Wind Nebula (PWN). On the other hand, in this region of the sky a number of faint, radio-emitting supernova remnants can be found, making a firm conclusion on the source type difficult. Here we present a detailed morphological study of recent H.E.S.S. data and compare the result with X-ray measurements taken with Chandra and radio data. The association with a PWN is likely, but contributions from supernova remnants cannot be ruled out.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا