ترغب بنشر مسار تعليمي؟ اضغط هنا

Establishing a connection between high-power pulsars and very-high-energy gamma-ray sources

133   0   0.0 ( 0 )
 نشر من قبل Svenja Carrigan
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the very-high-energy (VHE) gamma-ray wave band, pulsar wind nebulae (PWNe) represent to date the most populous class of Galactic sources. Nevertheless, the details of the energy conversion mechanisms in the vicinity of pulsars are not well understood, nor is it known which pulsars are able to drive PWNe and emit high-energy radiation. In this paper we present a systematic study of a connection between pulsars and VHE gamma-ray sources based on a deep survey of the inner Galactic plane conducted with the High Energy Stereoscopic System (H.E.S.S.). We find clear evidence that pulsars with large spin-down energy flux are associated with VHE gamma-ray sources. This implies that these pulsars emit on the order of 1% of their spin-down energy as TeV gamma-rays.

قيم البحث

اقرأ أيضاً

67 - D. Horns 2008
The high-lights of ground-based very-high-energy (VHE, $E>100$ GeV) gamma-ray astronomy are reviewed. The summary covers both Galactic and extra-galactic sources. A total of at least 70 sources are currently known. Implications for our understanding of the non-thermal Universe are discussed. The next generation of ground based gamma-ray instruments aims to cover the entire accessible energy range from as low as $approx 10$ GeV up to $10^5$ GeV and to improve the sensitivity by an order of magnitude in comparison with current instruments.
We present a new catalog of TeV gamma-ray sources using 1523 days of data from the High Altitude Water Cherenkov (HAWC) observatory. The catalog represents the most sensitive survey of the Northern gamma-ray sky at energies above several TeV, with th ree times the exposure compared to the previous HAWC catalog, 2HWC. We report 65 sources detected at $geq$ 5 sigma significance, along with the positions and spectral fits for each source. The catalog contains eight sources that have no counterpart in the 2HWC catalog, but are within $1^circ$ of previously detected TeV emitters, and twenty sources that are more than $1^circ$ away from any previously detected TeV source. Of these twenty new sources, fourteen have a potential counterpart in the fourth textit{Fermi} Large Area Telescope catalog of gamma-ray sources. We also explore potential associations of 3HWC sources with pulsars in the ATNF pulsar catalog and supernova remnants in the Galactic supernova remnant catalog.
The vast majority of pulsars detected by the Fermi Large Area Telescope (LAT) display exponentially cutoff spectra with cutoffs falling in a narrow band around a few GeV. Early spectral modelling predicted spectral cutoffs at energies of up to 100 Ge V, assuming curvature radiation. It was therefore not expected that pulsars would be visible in the very-high energy (VHE) regime (>100 GeV). The VERITAS announcement of the detection of pulsed emission from the Crab pulsar at energies up to 400 GeV (and now up to 1.5 TeV as detected by MAGIC) therefore raised important questions about our understanding of the electrodynamics and local environment of pulsars. H.E.S.S. has now detected pulsed emission from the Vela pulsar down to tens of GeV, making this the second pulsar detected by a ground-based Cherenkov telescope. Deep upper limits have also been obtained by VERITAS and MAGIC for the Geminga pulsar. We will review the latest developments in VHE pulsar science, including an overview of the latest observations, refinements, and extensions to radiation models and magnetic field structures, and the implementation of new radiation mechanisms. This will assist us in understanding the VHE emission detected from the Crab pulsar, and predicting the level of VHE emission expected from other pulsars, which is very important for the upcoming CTA.
The H.E.S.S. telescope array has observed the complex Monoceros Loop SNR/Rosette Nebula region which contains unidentified high energy EGRET sources and potential very-high-energy (VHE) gamma-ray source. We announce the discovery of a new point-like VHE gamma-ray sources, HESS J0632+057. It is located close to the rim of the Monoceros SNR and has no clear counterpart at other wavelengths. Data from the NANTEN telescope have been used to investigate hadronic interactions with nearby molecular clouds. We found no evidence for a clear association. The VHE gamma-ray emission is possibly associated with the lower energy gamma-ray source 3EG J0634+0521, a weak X-ray source 1RXS J063258.3+054857 and the Be-star MWC 148.
The H.E.S.S. Imaging Atmospheric Cherenkov Telescope Array is currently the most sensitive instrument for Very High Energy (VHE) gamma-ray observations in the energy range of about 0.1-10 TeV. During more than two years of operation with the complete 4-telescope array, many galactic and extragalactic VHE gamma-ray sources have been discovered. With its superior sensitivity and its large field-of-view camera, H.E.S.S. is particularly suited for surveys and detailed studies of extended sources. A selection of recent H.E.S.S. results is presented in this proceeding.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا