ترغب بنشر مسار تعليمي؟ اضغط هنا

A fast moving infrared excess source (G2) which is widely interpreted as a core-less gas and dust cloud approaches Sagittarius A* (SgrA*) on a presumably elliptical orbit. VLT K_s-band and Keck K-band data result in clear continuum identifications an d proper motions of this about 19m Dusty S-cluster Object (DSO). In 2002-2007 it is confused with the star S63, but free of confusion again since 2007. Its near-infrared (NIR) colors and a comparison to other sources in the field speak in favor of the DSO being an IR excess star with photospheric continuum emission at 2 microns than a core-less gas and dust cloud. We also find very compact L-band emission ($<$0.1) contrasted by the reported extended (0.03 up to about 0.2 for the tail) Brgamma emission. The presence of a star will change the expected accretion phenomena, since a stellar Roche lobe may retain a fraction of the material during and after the peri-bothron passage.
We present a kinematic analysis of jet component motion in the VLBI jet of the BL Lac object S5 1803+784, which does not reveal long-term outward motion for most of the components. Understanding the complex kinematic phenomena can possibly provide in sights into the differences between quasars and BL Lac objects. The blazar S5 1803+784 has been studied with VLBI at $ u$ =1.6, 2.3, 5, 8.4, and 15 GHz between 1993.88 and 2005.68 in 26 observing runs. We (re)analyzed the data and present Gaussian model-fits. We collected the already published kinematic information for this source from the literature and re-identified the components according to the new scenario presented in this paper. Altogether, 94 epochs of observations have been investigated. A careful study of the long-term kinematics reveals a new picture for component motion in S5 1803+784. In contrast to previously discussed motion scenarios, we find that the jet structure within 12 mas of the core can most easily be described by the coexistence of several bright jet features that remain on the long-term at roughly constant core separations (in addition to the already known {it stationary} jet component $sim$ 1.4 mas) and one faint component moving with an apparent superluminal speed ($sim$ 19c, based on 3 epochs). While most of the components maintain long-term roughly constant distances from the core, we observe significant, smooth changes in their position angles. We report on an evolution of the whole jet ridge line with time over the almost 12 years of observations. The width of the jet changes periodically with a period of $sim$ 8 to 9 years. We find a correlation between changes in the position angle and maxima in the total flux-density. We present evidence for a geometric origin of the phenomena and discuss possible models.
We present a new method to fit the variations of both coordinates of a VLBI component as a function of time, assuming that the nucleus of the radio source contains a binary black hole system (BBH system). The presence of a BBH system produces 2 pertu rbations of the trajectory of the ejected VLBI components. By using only the VLBI coordinates, the problem we have to solve reduces to an astrometric problem. Knowledge of the variations of the VLBI coordinates as a function of time contains the kinematical information, thus we are able to deduce the inclination angle of the source and the bulk Lorentz factor of the ejected component. Generally, there is a family of the BBH system producing the same fit to our data. To illustrate this method, we apply it to the source 1807+784. We find that the inclination of the source is i = 5.8+-1.8 degrees and the VLBI component is ejected with a bulk Lorentz factor of 3.7+-0.3. We determine the family of the BBH system which provides the best fit, assuming at first that the masses of the 2 black holes are equal and then that the masses are different. Each family of BBH systems is characterized by Tp/Tb~1.967, where Tp and Tb are the precession period of the accretion disk of the black hole ejecting the VLBI component and the orbiting period of the BBH system.
Context: This is the first of a series of papers presenting VLBI observations of the 293 Caltech-Jodrell Bank Flat-Spectrum (hereafter CJF) sources and their analysis. Aims: One of the major goals of the CJF is to make a statistical study of the appa rent velocities of the sources. Methods: We have conducted global VLBI and VLBA observations at 5 GHz since 1990, accumulating thirteen separate observing campaigns. Results: We present here an overview of the observations, give details of the data reduction and present the source parameters resulting from a model-fitting procedure. For every source at every observing epoch, an image is shown, built up by restoring the model-fitted components, convolved with the clean beam, into the residual image, which was made by Fourier transforming the visibility data after first subtracting the model-fitted components in the uv-plane. Overplotted we show symbols to represent the model components. Conclusions: We have produced VLBI images of all but 5 of the 293 sources in the complete CJF sample at several epochs and investigated the kinematics of 266 AGN.
Context: This is the second of a series of papers presenting VLBI observations of the 293 Caltech-Jodrell Bank Flat-Spectrum (hereafter CJF) sources and their analysis. Aims: To obtain a consistent motion dataset large enough to allow the systematic properties of the population to be studied. Methods: We present the detailed kinematic analysis of the complete flux-density limited CJF survey. We computed 2-D kinematic models based on the optimal model-fitting parameters of multi-epoch VLBA observations. This allows us to calculate not only radial, but also orthogonal motions, and thus to study curvature and acceleration. Statistical tests of the motions measured and their reliability have been performed. A correlation analysis between the derived apparent motions, luminosities, spectral indices, and core dominance and the resulting consequences is described. Results: With at least one velocity in each of 237 sources, this sample is much larger than any available before and allows a meaningful statistical investigation of apparent motions and any possible correlations with other parameters in AGN jets. Conclusions: This AGN survey provides the basis for any statistical analysis of jet and jet-component properties.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا